

Herme

The 4th COSPAR Symposium Small Satellites for Sustainable Science and Development Herzliya, Israel, November 7th 2019

The HERMES project

High Energy Rapid Modular Ensemble of Satellites Probing Space-Time Quantum Foam

and Hunting for Gravitational Wave Electromagnetic Counterparts

Andrea Sanna, University of Cagliari

Luciano Burderi, Alessandro Riggio – University of Cagliari Tiziana Di Salvo – University of Palermo Fabrizio Fiore, Alessandro Papitto – INAF – Rome Astronomical Observatory and many others...

Please, visit our websites:

http://hermes.dsf.unica.it

http://hermes-sp.eu

The Multi–Messenger Astronomy

GW170817

- NS-NS merging
- Host galaxy NGC 4993
- ~ 40 Mpc
- 70 observatories

The Multi-Messenger Astronomy Paradox

- 2025+ LIGO/VIRGO/KAGRA/LIGO-INDIA will detect GW170817 within ~
 300 Mpc with localisation accuracy ~10 deg²
- FERMI GBM would not have been able to detect GRB 170817A at D > 60 Mpc

We need a All-sky Monitor at least 10×GBM Area for letting Multi–Messenger Astronomy to develop from infancy to maturity! ₃

HERMES in a nutshell High Energy Rapid Modular Ensemble of Satellites

Aims:

- all Sky Monitor for fast and accurate detection of the position of bright, transient, high-energy events
- inspect fine temporal structure of transients
- first dedicated experiment in Quantum Gravity

How:

temporal triangulation of signals detected by a **swarm of LEO nano/micro satellites** equipped with:

- keV-Mev scintillators
- sub µs time resolution
- low X-ray background

Pros:

- modularity
- limited cost
- quick development

Principles of temporal triangulation

Determination of source position through delays in Time of Arrival (ToA) of an impulsive (variable) signal over 3 (or more) spatially separate detectors

position of the source in the sky: α , δ (2 parameters, N_{PAR} = 2)

 $i = 1, ..., N_{SATELLITES}$ $j = 1, ..., N_{SATELLITES}$

 $DEL_{ij} = ToA(i) - ToA(j)$

 $DEL_{ij} = -DEL_{ji}$; $DEL_{ii} = -DEL_{jj} = 0$

Number of (non trivial) different DEL_{ij} : $N_{DELAYS} = N_{SATELLITES} \times (N_{SATELLITES} - 1) / 2$

Number of independent DEL_{ij} : N_{IND} = N_{SATELLITES} - 1

Accuracy in determining α and δ with N_{SATELLITES}: $\sigma_{\alpha} \approx \sigma_{\delta} = c \sigma_{ToA} / < baseline > \times (N_{IND} - N_{PAR} + 1)^{-1/2}$

GW Triangulation & EM counterparts (Fermi GBM, INTEGRAL, HERMES Pathfinder)

The Gamma-Ray Burst phenomenon

- sudden and unpredictable bursts of hard-X / soft gamma rays with huge flux
- most of the flux detected from 10-20 keV up to 1-2 MeV,
- fluences for very bright GRB (about 3/yr) 25 counts/cm²/s (GRB 130427A 160 counts/cm²/s)
- bimodal distribution of duration (0.1-1.0 s & 10.0-100.0 s)
- measured rate (by an all-sky experiment on a LEO satellite): $\sim 0.8/day$ (estimated true rate $\sim 2/day$)
- evidence of submillisecond structures
- cosmological (spatial isotropy) origin

Long GRB: BH collapse of a massive star

Short GRB: NS–NS binary system coalescence (emission of GW)

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

GRB - Fireball model

- multiple collision of relativistic shells ($\Gamma = [1 (v_{jet}/c)^2]^{-1/2} \ge 100$)
- explains rapid variability
- synchrotron radiation and inverse Compton scattering

Data 40-700 keV (A=1136 cm2, courtesy of F. Frontera)

• Quantum Gravity

(Massive Photons or Lorentz Invariance Violation)

```
\begin{split} \text{MP or LIV predictions:} \\ |v_{\text{phot}}/c - 1| &\approx \xi \, E_{\text{phot}}/(M_{QG} \, c^2)^n \\ \xi &\approx 1 \\ n &= 1,2 \text{ (first or second order corrections)} \\ M_{QG} &= \zeta \, m_{\text{PLANCK}} \quad (\zeta &\approx 1) \\ m_{\text{PLANCK}} &= (hc/2\pi G)^{\frac{1}{2}} &= 21.8 \, 10^{-6} \, g \end{split}
```

Implications for travel time of photons:

 $\Delta t_{MP/LIV} = \xi (D_{TRAV}/c) [\Delta E_{phot}/(M_{QG} c^2)]^n$ $D_{TRAV}(z) = (c/H_0) \int_0^z d\beta (1+\beta) / [\Omega_{\Lambda} + (1+\beta)^3 \Omega_M]^{1/2}$

GrailQuest: hunting for Atoms of Space and Time hidden in the wrinkle of Space–Time

A swarm of nano/micro/small–satellites to probe the ultimate structure of Space–Time and to provide an all–sky monitor to study high–energy astrophysics phenomena

Contact Scientist: Luciano Burderi

HERMES project development – incremental strategy

Funding status at 2019, July

ASI (Italian Space Agency) – 23/12/2016:	€ 500,000
MIUR (Italian Ministry of University and Research) and ASI – 29/11/2017:	€ 1,650,915 (MIUR)
	€ 815,085 (ASI)
EU Horizon 2020 – Call: H2020-SPACE-2018-2020 – 17/07/2018:	€ 3,318,450
ASI (Italian Space Agency) – internal funding 05/02/2019	€ 1,900,000
	0 0 104 450

Total Funding (at 06/2019):

€ 8,184,450

HERMES Pathfinder Payload

HERMES Next Generation – OneWeb

Mon, 11 November 201	Sales
Description	
IMPORTANT: Due to space limitations, to regi this event and submit an abstract, please get	ster your interest in attending a ticket and also send an

email to NatureAstronomy@nature.com.

The goal of the event is to investigate astronomical research ideas that could be addressed by small satellites or cubesat missions.

The event will be split into two parts. The morning part will be 6 invited presenters, 3 from academia, 2 from the industry and one from the government. These are:

Prof Giovanna Tinetti, UCL - Blue Skies Limited

Prof Stephen Serjeant, Open University

Future of astronomy ..

Dr Martin Elvis, Harvard-Smithsonian

Dr Markos Trichas, Airbus (smallsat platforms)

Mr Doug Liddle, InSpace (cubesat platforms)

Mr Andrew Ratcliffe, UKSA (space policy)

We also invite contributed presentations (10 mins + 5 mins for Q&A) from interested participants. We will look for ideas that can address the following question:

"The launch of the first 6 out of 900 OneWeb satellites earlier this year and the establishment by Airbus-OneWeb Satellites of the first-ever assembly line capable of producing 2 small satellites per day marks the beginning of a new era for space. An era which allows the rapid production and deployment of highly capable small satellites at a cost comparable to that of Cubesats yet able to comprehensively address commercial and operational security needs. New Space could offer significant benefits to the scientific community which has until now relied almost exclusively on space agency developments, namely large monolithic systems that offer world-class capabilities for new scientific discoveries but which require

s Ended

Details

Date And Time

Mon, 11 November 2019 09:00 - 18:00 GMT Add to Calendar

Location

Springer Nature Campus 2 Crinan Street London N1 9SQ United Kingdom View Map

HERMES Next Generation – Starlink

SPACE

Starlink Constellation 12,000 sats SpaceX (Elon Musk)

- 4425 @ 1200 km (completed by 2024)
- 60 satellites launched on 16/05/2019
- 7518 @ 340 km
- up to 1,000,000 fixed satellite earth stations (February 2019)
- optical inter-satellite links
- $100 \div 500$ kg satellites (mass production)
- board a 100 cm² effective area GAGG crystal

 SDD photodetector (position sensitive + coded mask?) module on each satellite
- 120 m² effective area All Sky Monitor!

The HERMES project: the movie

Please, visit our websites: http://hermes.dsf.unica.it http://hermes-sp.eu

Thank you

Delays from cross-correlation analysis

Delays from cross-correlation analysis (GBM data)

GRB data (absence of millisecond variability): $\Delta t = 10 \text{ s}; \varphi_{\text{GRB}} = 7 \text{ phot/s/cm}^2; \varphi_{\text{BCK}} = 3 \text{ phot/s/cm}^2;$ $A = 125 \text{ cm}^2; N_{\text{PHOT}} = 8750 \text{ (source)} + 3750 \text{ (bkg)} = 12500$

Kernel-modified CCF: bin = 1 ms; kernel = 7 ms $\sigma_{CCF} \approx 3 \text{ ms}$ $\sigma_{\alpha} \approx \sigma_{\delta} \approx 15 \text{ deg}$

GRB & Quantum Gravity

 $\Delta t_{MP/LIV} = \xi \left(D_{TRAV} / c \right) \left[\Delta E_{phot} / (M_{QG} c^2) \right]^n$

$$D_{\text{TRAV}}(z) = (c/H_0) \int_0^z d\beta \ (1+\beta) / [\Omega_{\Lambda} + (1+\beta)^3 \Omega_{\text{M}}]^{1/2}$$

$$\frac{\mathbf{d}\mathbf{N}_{\mathbf{E}}(\mathbf{E})}{\mathbf{d}\mathbf{A} \mathbf{d}\mathbf{t}} = \mathbf{F} \times \begin{cases} \left(\frac{\mathbf{E}}{\mathbf{E}_{\mathrm{B}}}\right)^{\alpha} \exp\{-(\alpha - \beta)\mathbf{E}/\mathbf{E}_{\mathrm{B}}\}, \, \mathbf{E} \leq \mathbf{E}_{\mathrm{B}}, \\ \left(\frac{\mathbf{E}}{\mathbf{E}_{\mathrm{B}}}\right)^{\beta} \exp\{-(\alpha - \beta)\}, \quad \mathbf{E} \geq \mathbf{E}_{\mathrm{B}}. \end{cases}$$

 $\sigma_{CCF} \approx 100~\mu s/~(N_{PHOT}/12000)^{-1/2}$ (GRB with ms variability) 100 nano–satellites of A = 100 cm²

Energy band	$\mathbf{E}_{\mathbf{AVE}}$	N	$\mathbf{E_{CC}}(\mathbf{N})$	N	$\mathbf{E_{CC}}(\mathbf{N})$	$\mathbf{\Delta T}_{\mathrm{LIV}}~(\xi=1.0,~\zeta=1.0)$			
${ m MeV}$	${ m MeV}$	$egin{array}{l} (eta=-2.5) \ {f photons} \end{array}$	$\mu {f s}$	$egin{array}{l} (eta=-2.0) \ {f photons} \end{array}$	$\mu {f s}$	$egin{array}{c} \mu {f s} \ {f z} = {f 0}.{f 1} \end{array}$	$egin{array}{c} \mu {f s} \ {f z} = {f 0}.{f 5} \end{array}$	$\mu {f s} \ {f z} = {f 1.0}$	$egin{array}{c} \mu {f s} \ {f z}={f 3}.{f 0} \end{array}$
0.005 - 0.025	0.0112	3.80×10^{6}	0.38	3.02×10^{6}	0 43	0.04	0.25	0.51	1 42
0.025 - 0.050	0.0353	$1.40 imes10^6$	0.62	$1.17 imes10^6$	0.69	0.13	0.72	1.46	4.10
0.050 - 0.100	0.0707	$1.10 imes10^6$	0.71	$9.98 imes10^5$	0.74	0.27	1.43	2.93	8.21
0.100 - 0.300	0.1732	$\mathbf{8.98 imes 10^5}$	0.79	$1.00 imes 10^6$	0.74	0.66	3.51	7.19	20.10
0.300 - 1.000	0.5477	$2.07 imes \mathbf{10^5}$	1.64	$3.82 imes \mathbf{10^5}$	1.20	2.09	11.11	22.72	63.56
1.000 - 2.000	1.4142	$2.63 imes \mathbf{10^4}$	4.56	$8.20 imes \mathbf{10^4}$	2.60	5.40	28.68	58.67	164.12
2.000 - 5.000	3.1623	$1.07 imes 10^4$	7.19	$4.92 imes10^4$	3.35	12.07	64.12	131.19	367.00
5.000 - 50.00	15.8114	$f 3.52 imes 10^3$	12.54	$2.95 imes \mathbf{10^4}$	4.33	60.35	320.62	656.00	1834.98
									20

GRB & Lorentz Invariance Violation (LIV) with Fermi

HERMES 3U CubeSat

10×10×30 cm

•

Gyroscope Stability on 3 axes

On board Systems:

Data recording:

- continuous on temporary buffer
- trigger capability for data recording
- continuous download of data
 (VHF) for monitoring of
 known bright sources

Data download:

- S-band download on ground stations (equatorial orbit)
- VHF data transmission
- IRIDIUM constellation for data transmission