

Binary neutron star mergers as progenitors of short gamma-ray bursts

RICCARDO CIOLFI

INAF - Osservatorio Astronomico di Padova INFN - Sezione di Padova

Ciolfi 2020a, MNRAS Lett. **495**, L66 <u>ArXiv:2001.10241</u> Ciolfi et al. 2019, PRD **100**, 023005 <u>ArXiv:1904.10222</u> Lazzati, Ciolfi, Perna 2020, ApJ **898**, 59 <u>ArXiv:2004.10210</u>

> SCIENTIFIC WORKSHOP 18 - 19 NOV. 2020

GWI708I7 detection timeline

GRB 170817A

GRB long/short divide

long GRBs

short GRBs

- $T_{90} \lesssim 2 \,\mathrm{s}$
- no supernova associations
- both elliptical & late-type galaxies
- larger offsets from host galaxy centres
- candidate kilonova in GRB 130603B

NS-NS (NS-BH) mergers \checkmark

• $T_{90} \gtrsim 2\,\mathrm{s}$

- confirmed supernova associations (Hypernovae $\geq 10^{52} \text{ erg}$)
- only late-type galaxies with high star formation rates

core-collapse supernovae >

GRB jet paradigm

GRB 170817A: a peculiar GRB

from GRB and multiwavelength afterglow modelling

observed gamma-rays come from mildly relativistic outflow ($\Gamma \sim 2-8$) moving along the line of sight

Canonical SGRB or choked jet?

Lazzati+2018

Gottlieb+2017

VLBI observations

global network of 32 radio telescopes

Mooley+2018

12

apparent superluminal motion between 75 and 230 days

source is moving relativistically (and getting closer)

Ghirlanda+2018

source size < 2 m arcseconds @ 207 days source is still rather compact!

VLBI observations

global network of 32 radio telescopes

SGRB jets from BNS mergers

Product of BNS mergers

SGRB jets from BNS mergers

SGRB jets from BNS mergers

BNS merger simulations

Ciolfi+2017

Magnetic field amplification and geometry

Ciolfi+2019: 100 ms of post-merger evolution

Magnetically driven wind

Magnetically driven wind

Ciolfi+2019

@50-100 ms after merger

nearly **isotropic** and **constant** density distribution from ~50 km to ~400 km

cumulative mass flow across 150 km radius

magnetized remnant NS

- surrounded by dense isotropic environment
- slow steady outflow maintaining a fixed radial density profile

BNS mergers with much longer evolution

Ciolfi 2020a

- BNS system with properties (e.g. NS masses) consistent with GW170817
- two different initial magnetization levels (factor 5 in field strength)
- evolution up to ~250 ms after merger

massive NS remnant can produce a collimated outflow!

BNS mergers with much longer evolution

Ciolfi 2020a

- BNS system with properties (e.g. NS masses) consistent with GW170817
- two different initial magnetization levels (factor 5 in field strength)
- evolution up to ~250 ms after merger

collimated

outflow

higher initial magnetization

..but not ubiquitous

Emerging helical magnetic field

Ciolfi 2020a

Can this collimated outflow evolve into a SGRB jet?

compared to GRB 170817A jet parameters:

- outflow energy is insufficient (or at most marginally consistent)
- outflow collimation is insufficient
- low outflow velocity of ~0.2c and energy-to-mass flux ratio <0.01
 - → no way to accelerate up to ~0.995c (Lorentz factor of 10) or more

outflow is at least 3 orders of magnitude too heavy!

massive NS scenario for SGRBs is strongly disfavoured

Connecting with EM observations

BNS merger simulations limited to scales ~100ms/1000km

disconnected from scales relevant for SGRB EM radiation (prompt & afterglow)

at 18.35

2 [10⁴-m]

need for models of jet propagation across the environment up to large scales

GRB 170817A: intrinsic jet properties

Lazzati, Ciolfi, Perna 2020

Towards the full picture..

NEXT CHALLENGE: putting together BNS mergers and jet propagation simulations

Pavan et al., in preparation

..stay tuned!

Take-home message

- BNS merger can produce short GRBs!
- Open questions: How is the jet launched? Is the central engine a massive NS or an accreting BH?
- leading investigation tool: GRMHD simulations of the merger process
 current results favour the BH scenario, but this conclusion is not final
- modelling the propagation of incipient jets across the environment at large scales is necessary to connect with EM observation, but current studies are not directly linked to the merger process
- Next challenge: putting things together

References

- **R. Ciolfi** (2020a), MNRAS Letters **495**, L66

Collimated outflows from long-lived binary neutron star merger remnants

- **R. Ciolfi**, W. Kastaun, J.V. Kalinani, B. Giacomazzo (2019), PRD **100**, 023005 *First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger*

- D. Lazzati, **R. Ciolfi**, R. Perna (2020), ApJ **898**, 59 Intrinsic properties of the engine and jet that powered the short gamma-ray burst associated with GW170817

- **R. Ciolfi**, J.V. Kalinani (2020), ApJ Letters **900**, L35 Magnetically driven baryon winds from binary neutron star merger remnants and the blue kilonova of 2017 August

- D. Lazzati, R. Perna, B. J. Morsony, D. López-Cámara, M. Cantiello, **R. Ciolfi**, B. Giacomazzo, J. C. Workman (2018), PRL **120**, 241103

Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817

- **R. Ciolfi**, W. Kastaun, B. Giacomazzo, A. Endrizzi, D. M. Siegel, R. Perna (2017), PRD **95**, 063016 General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

Recent Reviews

- **R. Ciolfi** (2020c), Frontiers in Astronomy and Space Sciences 7, 27, Invited Review for the Article Collection "Gravitational Waves: A New Window to the Universe" (hosted by R. Perna and B. Giacomazzo) *Binary neutron star mergers after GW170817*

- **R. Ciolfi** (2020b), General Relativity and Gravitation **52**, 59, Invited Review for the Topical Collection on "Binary neutron star mergers" (Guest Editor N. Stergioulas)

The key role of magnetic fields in binary neutron star mergers

- **R. Ciolfi** (2018), IJMPD **27**, No. 13, 1842004, Invited Review for the Special Issue "Gamma-Ray Bursts in the Multi-Messenger Era" (Guest Editor L. Nava) *Short gamma-ray burst central engines*

BACKUP SLIDES

Results from Ciolfi 2020a

- GRMHD BNS merger simulations with up to >250 ms of massive NS remnant evolution
- collimated outflow form a massive NS obtained for the first time
- massive NS can launch a collimated outflow, but this outcome is not ubiquitous
- followed the full outflow development, studied the associated energetics and properties
- identified the energy reservoir (NS differential rotation)
- identified the launching mechanism (magnetorotational)
- found strong indications against the possible production of a SGRB

→ accreting BH scenario is favoured

A radioactively-powered transient

ejecta in NSNS and NSBH mergers

r-process

capture rate much faster than decay more than one neutron capture at a time requires very special conditions: High T (T > 10⁹ K) • High neutron density $(n_n > 10^{22} \text{ cm}^{-3})$

radioactive decay on

timescales of >> sec

optical/IR signal

"kilonova"

August 2017 kilonova (AT2017gfo)

lightcurves and spectra consistent with a kilonova! BNS mergers are confirmed as ideal site for r-process nucleosynthesis

Magnetically driven winds and blue KN

Ciolfi & Kalinani 2020

GRB 170817A as a canonical SGRB

Lazzati+2018

an ordinary SGRB event observed off-axis? > viable explanation!

Magnetic field configuration

Magnetic field configuration

hints of an emerging global field structure with magnetar-like dipolar field

l 00 km