

# Time variability in GRBs

Cristiano Guidorzi



RMES

SCIENTIFIC WORKSHOP 18 - 15 nov. 2020

#### What do GRB light curves look like?



University

## What do GRB light curves look like?



University of Ferrara

### GRB profiles: X- to gamma-rays





Energy

Nov 18, 2020









### Variability: the simplest metrics T/ $\delta t$



NE UN/1

University

of Ferrara

Nov 18, 2020

## Different degrees of variability



- $\delta t \sim T$  (1 single smooth pulse, e.g. FRED)
- δt < T (multi-peak burst)
- δt << T (high-frequency variability + long quiescent times)</li>



Nov 18, 2020



## Variability: some metrics





- Determine a smoothed profile {g<sub>i</sub>} (through some low-pass filter), to be used as a reference one.
- Compute the variance of {*c<sub>i</sub>*} with respect to {*g<sub>i</sub>*}
- Remove the statistical noise {v<sup>2</sup><sub>i,statnoise</sub>} due to counting statistics
- Normalise by a factor  $f_N$

Nov 18, 2020



$$V \stackrel{\text{def}}{=} \frac{\sum_{i=1}^{N} [(c_i - g_i)^2 - v_{i, \text{ statnoise}}^2]}{f_N}$$



$$V = Y^{-0.24} \frac{1}{N} \sum \frac{(C_i - \langle C \rangle_{0.3T_{90}})^2 - (B_i + C_i)}{C_p^2}$$



$$V_f^E = \frac{\sum_{i=1}^N \left[ (\sum_{j=1}^N a_{ij}C_j)^2 - \sum_{j=1}^N a_{ij}^2 C_j \right]}{\sum_{i=1}^N \left[ (\sum_{j=1}^N b_{ij}C_j - B_i)^2 - \sum_{j=1}^N b_{ij}^2 C_j \right]},$$

Nov 18, 2020



12 / 42

NE UNIL

University





Significant Correlation, but highly scattered (=0.5-0.6 dex)

Nov 18, 2020







Significant Correlation, but highly scattered (=0.5-0.6 dex)

Nov 18, 2020







Nov 18, 2020



### Pulse width vs. energy and spectral lag

ERMO





 $w(E) \propto E^{-0.4}$ 

(Fenimore+95)

Nov 18, 2020



Example: GRB 010214 by BeppoSAX (CG+03)

ENTIFIC WORKSHOP 18 - 15 NOV. 2020

#### University of Ferrara

17 / 42

#### Spectral lag: short vs. long GRBs





18 - 15 NOV. 2020

Nov 18, 2020

### Lag – Luminosity relation



Confirmed by Swift/BAT GRBs with known z (Ukwatta+10)

Lag from CCF of rest-frame bands: 100-150 keV vs. 200-250 keV

 $^{-}$  $^{\circ}$ 

10<sup>51</sup> ergs

Isotropic Luminosity



University

#### Lag – Lum relation extends to X-ray flares





X-ray flares do follow the same relation  $Log(L) \propto (-0.95 \pm 0.23) Log(\tau)$ 

Common mechanism for prompt gamma-rays and X-ray flares

Nov 18, 2020



University

#### Lag – Lum: possible interpretations

Spectrum

Light Curve



University

#### Lag-Lum / Var-Lum : kinematic/geometric interpret.







#### Power density in time domain



18 - 15 NOV. 2020

23/42

University

### Wavelet power spectrum



- Light Curve decomposition based on MODWT (Maximum Overlap Discrete Wavelet Transform; Percival & Walden, 2006)
- Superposition of  $\sim 10^{-1}$  s and  $\sim 10$  s timescales in some GRBs

Nov 18, 2020



University

#### **Dominant timescales from Fourier PDS**



(CG+16)

Nov 18, 2020



University

#### Fourier analysis of individual GRBs





#### PDS PL index correlates with Ep

ERMO







It clashes with IS synchrotron prediction:  $E_{p,i} \propto \Gamma^{-2}$  (Zhang & Mészáros02)

..unless structured jets with variable  $\epsilon_{_B} = \epsilon_{_B}(\Gamma)$  and  $\epsilon_{_e} = \epsilon_{_e}(\Gamma)$  are considered.

(Ramirez-Ruiz & Lloyd-Ronning02)

CIENTIFIC WORKSHOP

18 - 15 NOV. 2020

(Dichiara+16; CG+16) 27 / 42

Nov 18, 2020

#### Lack of evolution of pulse width



Should  $\gamma$ -rays be due to blastwave interaction with external medium, pulse width should increase with time.

 $\rightarrow$  dissipation must take place at the same distance.

(Fenimore+99)

Nov 18, 2020



University



#### Minimum variability timescale: Haar wavelets



Lightcurve

40

WORKSHOP

<u>18 - 15 NOV. 2020</u>

**Denoised Lightcurve** 

50 60 70



IRME

Nov 18, 2020

## Minimum variability timescales (Fermi)

Brightest and most impulsive GRBs: only ~10% of them have < 4 ms (obs frame) Median values (observer frame): 134 ms (long) vs. 18 ms (short) Median values (source frame): 45 ms (long) vs. 10 ms (short)



(Golkou+15)

Nov 18, 2020



University

### Minimum variability timescales (Fermi)



Nov 18, 2020



University

### Constraints on $\Gamma_{_{min}}$ and on $R_{_{min}}$ from $\Delta t_{_{min}}$



(Abdo+09; Lithwick & Sari01)

$$\Gamma > \Gamma_{\min} = \left[\sigma_T \left(\frac{d_L(z)}{c\Delta t}\right)^2 E_c f(E_c) F(\beta)\right]^{\frac{1}{2(1-\beta)}} (1+z)^{\frac{\beta+1}{1-\beta}} \left(\frac{E_0 E_c}{m_e^2 c^4}\right)^{\frac{\beta+1}{2(\beta-1)}}$$

75 150

Short

Lona

17

Constraint set by the need to suppress pair production up to the hardest photons observed:

known-z  $\tau_{_{\mathcal{V}\mathcal{V}}}(E_{max}) < 1$ 16 assigned−z ○ C  $\tau_{\gamma\gamma}(E_0) = \sigma_{\rm T} \left(\frac{d_L(z)}{c\Delta t}\right)^2 E_c f(E_c) (1+z)^{-2(\beta+1)} \Gamma^{2(\beta-1)} \left(\frac{E_0 E_c}{m_{\rm e}^2 c^4}\right)^{-\beta-1} F(\beta).$ 15 log<sub>10</sub>(Radius) (cm) 14 13  $R_{min} = \frac{2c\,\Gamma_{min}^2\,\Delta t_{min}}{1+z}$ 12 11 100 50 10 0 0.0 -2.0 -1.5-1.0-0.50.5 1.0 1.5 2.0 2.5  $\log_{10}(\frac{T_{90}}{1+z})$  (sec) (Golkou+15) Nov 18, 2020 33 / 42 MORKSHOP 15 nov. 2020



### Average power density spectra



University

#### PDS power-law index vs. Energy



University

#### Inverse problem: what yields $\alpha = 5/3 - 2$ ?



Fully developed turbulence Kolmogorov velocity spectrum

Relativistic outflow of a jet making its way out through stellar envelope

MHD turbulence (ICMART): 5/3 < α < 2

Pair-annihilation dominated neutrino cooling triggered by MRI in accretion disc

Many other processes

#### PDS with 5/3 < $\alpha$ < 2

Nov 18, 2020



SCIENTIFIC WORKSHOP

#### A simple (constant) Poisson process



Memory-less sequence of independent shots with same probability of occurring per unit time:

$$P(\Delta t) = \frac{1}{\tau} e^{-t/\tau} = \lambda e^{-\lambda t}$$
$$\langle \Delta t \rangle = \tau = 1/\lambda$$

Nov 18, 2020



38 / 42

University

#### Time-varying Poisson process: $\lambda = \lambda(t)$



At a given time t, events are generated according to a Poisson process with rate  $\lambda = \lambda(t)$  and, as such, are statistically independent

University

of Ferrara

 The expected rate λ is itself a function of time, which can vary either randomly or deterministically as time passes.

> (CG+15) 39 / 42

Nov 18, 2020



## **GRBs as time-varying Poisson process**

 $10^{0}$ 

 $10^{-1}$ 

 $10^{-2}$ 

\_ 10

Starving

for S/N



BAT -

 $10^{5}$ 

GBM -

BATSE -

 $\lambda$  = rate of pulses

Probability density distrib:

$$f(\lambda) = A \lambda^{-\alpha} \exp(-\beta \lambda)$$

(adopted for solar X-ray flares and solar energetic particle events; Li+14)

| )        | S       |                               |                           |                               |          |        |                        |              |       |
|----------|---------|-------------------------------|---------------------------|-------------------------------|----------|--------|------------------------|--------------|-------|
|          | P(Δt) [ | $10^{-4}$<br>$10^{-5}$        | Waiting ti<br>distributic |                               | me<br>on |        |                        |              |       |
|          |         | 10 <sup>-7</sup>              |                           |                               | ŭ        |        | ŀ                      |              |       |
|          |         | 10 10 <sup>-1</sup>           | 1                         | .0 <sup>0</sup> 1             | $0^1$    | 10     | $^{2}$ 10 <sup>3</sup> | $10^{4}$     | 1     |
|          |         |                               |                           |                               |          | Δt [s] | 0                      |              |       |
| Sample   | Size    | $\alpha$                      | β                         | PL Index                      | CL       |        |                        |              |       |
|          |         |                               | (s)                       | $(=3-\alpha)$                 | (%)      |        |                        |              |       |
| BAT      | 1582    | $0.94\substack{+0.09\\-0.10}$ | $6.53^{+1.22}_{-0.98}$    | $2.06\substack{+0.10\\-0.09}$ | 26.4     |        |                        |              |       |
| BATSE    | 6560    | $1.24\pm 0.04$                | $1.53^{+0.19}_{-0.16}$    | $1.76\pm0.04$                 | 3.0      |        | CPR domm               |              | b and |
| BATSE12  | 5156    | $1.19\pm 0.05$                | $2.72^{+0.33}_{-0.29}$    | $1.81\pm0.05$                 | 7.5      |        | GRD gamm               | a ay puises  | anu   |
| BATSE34  | 4912    | $1.18\pm 0.05$                | $1.23^{+0.18}_{-0.16}$    | $1.82\pm0.05$                 | 76.6     |        | early X-ray            | flares toget | her!  |
| GBM      | 1839    | $0.64^{+0.16}_{-0.17}$        | $6.76^{+1.44}_{-1.14}$    | $2.36^{+0.17}_{-0.16}$        | 36.3     |        | Common d               | vnamics      |       |
| BATtrunc | 1445    | $0.78\substack{+0.15\\-0.16}$ | $6.99^{+1.63}_{-1.28}$    | $2.22^{+0.16}_{-0.15}$        | 5.2      |        | common d               | lynamics     |       |
| BAT-X    | 854     | $1.34\substack{+0.06\\-0.07}$ | $6.33^{+1.54}_{-1.20}$    | $1.66^{+0.07}_{-0.06}$        | 5.4      |        |                        |              |       |
| BAT-Xz   | 359     | $1.45_{-0.11}^{+0.10}$        | $1.26^{+0.72}_{-0.42}$    | $1.55_{-0.10}^{+0.11}$        | 18.5     |        |                        |              |       |
|          |         |                               |                           |                               |          |        |                        | (CG+15)      |       |

 $P(\Delta t) = \frac{(2-\alpha)\beta^{2-\alpha}}{(\beta + \Delta t)^{3-\alpha}}$ 

Waiting time distribution:

Nov 18, 2020



(CG+15) 40 / 42



