

Scientific Workshop, November 18-19, 2020

H.E.R.M.E.S.

High Energy Rapid Modular Ensemble of Satellites

Spacecraft

Michèle Lavagna, Paolo Lunghi & PoliMi Team

Dipartimento di Scienze e Tecnologie Aerospaziali Dipartimento di Elettronica, Informazione e Bioingegneria

The overall project fundamentals

Scientific goal

→ accurate and prompt localisation of *bright hard X-ray/soft* γ -ray transients such as γ -ray bursts (GRBs)

- Technological goal → implementation of a <u>fractionated space assets</u> by means of *small satellites* to:
 - Provide *short time* to orbit
 - Provide agility and mission flexibility
 - Contain costs

The mission architecture

HERMES Workshop, November 19 2020

Service Module

Constraints

- Triangularisation → sats triplets
- Fast comms
- large data volume
- control authority needed
- limited cost

6 - 3U form factor cubesats class

The on orbit timeline

Sizing the orbits Mission Analysis

HERMES Workshop, November 19 2020

The mission analysis logic

The baseline trajectory design shall consider:

- 6 satellites in *loose formation*
- Co-pointing requirements for GRB localisation
- Payload sensitivity to environment
- No CoM control on board

Orbit selection- tradeoff

Polar and South Atlantic Anomaly forbidden

Continuous sky survey (galactic center avoidance)

O<Orbit plane inclination<20 deg; >70deg

Orbit altitude<600 km

parameter	LEO equatorial	Sun Syncronous			
Height (km)	500-550				
Eccentricity	0 (circular)				
Inclination (deg)	0 98				
RAAN (LTN)	-	6am/12am			

HERMES Workshop, November 19 2020

Orbit selection – triangularisation: FF natural evolution

Baseline natural drift evolution: 3 days to D=1000km

Baseline natural drift evolution log term

POLITECNICO MILANO 1863

HERMES Workshop, November 19 2020

Sizing the orbits Mission Analysis – FF & poiting strategy

HERMES Workshop, November 19 2020

POLITECNICO MILANO 1863

Orbit selection – FOV & triangularisation

POLITECNICO MILANO 1863

HERMES Workshop, November 19 2020

Orbit selection – triangularisation: pointing strategy

1. Zenith pointing for each payload LoS

- No maneuver required
- Earth in the field of view→shadowing
- 2. Co-alignment of n 3 payload LoSs on an Inertial-selected direction
 - maneuvers required
 - Earth in the field of view \rightarrow shadowing
- **3.** Co-alignment of n 3 payload LoSs on a LVLH-selected direction (i.e. LoSs aligned on the zenith direction of a specific satellite in the fleet).
 - Reduced maneuvering required
 - Sun\galactic center in the field of view
- 4. Co-alignment of n 3 payload LoSs on a LVLH-optimized direction (i.e. LoSs aligned on a optimal direction, defined in the LVLH frame, selected and computed on-ground).
 - Optimized field of view
 - Sun\galactic center easy avoidance
 - Maneuvering required

Orbit selection – triangularisation: pointing strategy

HERMES Workshop, November 19 2020

Orbit selection – triangularisation: pointing strategy 4

HERMES Workshop, November 19 2020

Baseline evolution with pointing strategy

HERMES Workshop, November 19 2020

Baseline evolution with pointing strategy summary

	Cas	e	Results			
S/C [-]	h [km]	Strategy	μ [GRB]	3σ [GRB]	SE_{μ} [GRB]	SE_{σ} [GRB]
6	500	co-alignment	120.26	13.6	0.14	0.09
6	550	co-alignment	124.19	15.86	0.16	0.11
3	500	co-alignment	49.67	8.7	0.19	0.13
3	550	co-alignment	52.11	8.8	0.19	0.13
6	550	optimized	234.80	57.03	1.94	1.39
5	550	co-alignment	82.02	15.08	0.34	0.24
5	550	optimized	135.48	13.29	0.40	0.28

Sizing the orbits Mission Analysis – orbit injection strategy

HERMES Workshop, November 19 2020

Orbit selection – sensitivity to on orbit insertion

Launcher's injection conditions of the 6 s\c are **fundamental for the FF\constellation evolution**

HERMES Workshop, November 19 2020

Sizing the orbits Data transfer & Nav

HERMES Workshop, November 19 2020

TTM&TC requirements and design synthesis

Scientific requirements on scientific data transfer

GRB early warning: communication relay network

- Short burst of data at request (generally outside comm window).
- Max 30 min latency

<u>**Possible solution**</u> \rightarrow Intersatellite link required

- Not practically achievable by the HERMES constellation until HERMES-CC
 - \rightarrow Commercial network needed (Orbcomm, Globalstar, Iridium).

<u>Adopted solution</u> \rightarrow IRIDIUM network:

- Flight Heritage (TechEdSat missions)
- Low Data latency

TTMTC requirements and design synthesis

UHF/VHF link

- High reliability, flight heritage for CubeSat
- Omnidirectional, low datarate (~ 10 kbps), allows operation without ADCS poiting
- Baseline for **TC** in each phase and for **TM** in LEOP, Commissioning and Safe mode
- Can operate as <u>a backup for scientific data</u> (with reduced performances)

S-Band

- Flight heritage in CS market
- Low directionality (60 deg cone), still it requires slew maneuver
- Minimum datarate: 500 kbps, going up to ~2000 kbps
- Baseline for **P/L** data and for **TM** in nominal phases after Commissioning.
- Can act as a backup for **TC**.

Attainable data volume dumping/dd →1237 Mb/dd

POLITECNICO MILANO 1863

HERMES Workshop, November 19 2020

TTMTC requirements and design synthesis

 GS	Latitude (deg)	Longitude (deg)
 Malindi Katherine	-2.995713889 -14.3755	40.19495556 132.152

GS	Malindi	Katherine	Malindi + Katherine	
Mean contact duration (min)	10.25	6.48	16.73	
Number of passages per year	5146	5146	5146	Always
Mean revisiting time	102.15	102.15	102.15	
Mean comm-free time	91,9	95,67	67,72	
Cumulative time with 1 sat in visibility	143.26	107.93	251.19	
Cumulative time with 2 sat in visibility	32.55	13.51	46.06	
Cumulative time with 3 sat in visibility	3.79	1.35	5.14	

Only eclipse	GS	Malindi	Katherine	Malindi + Katherine
	Mean contact duration (min)	10.25	6.48	16.73
	Number of passages per year	1891	1891	1095
Mea	an revisiting time shadow/sunlight	102.15/1013	102.15/1013	102.15/1100
Mea	n comm-free time shadow/sunlight	91,9/1000	95,67/1000	67,72/1100
Cun	nulative time with 1 sat in visibility	55.11	40.30	56
Cun	nulative time with 2 sat in visibility	10.96	4.71	9
Cum	nulative time with 3 sat in visibility	1.24	0.45	1

Orbit selection – GPS visibility

POLITECNICO MILANO 1863

HERMES Workshop, November 19 2020

Sizing the platform Attitude determination & Control

HERMES Workshop, November 19 2020

POLITECNICO MILANO 1863

Pointing performance – attitude system sizing

	Perform	nance	Value				Component	unit	COTS/ Custom
	APE ARE			5 deg 0.1 deg/s			IMU	1	COTS
	AKE Positio	ning		3 d 30	leg m		GYROSCOPE 3 axis	1	COTS
	Jitter		<u>\</u> 1	<1 00. do	deg		GPS	1	COTS
	Stabilit	ty	6dB and 30deg stability margins			MAGMTR 3 axes	1	COTS	
							SUNSENSOR fine	4	COTS
							SUNSENSOR coarse	12	COTS
ADCS Mode	MAGMTR	FSSXX	CSSXXX	IMU	MTORQ	RWL-ASM	IMU	1	
Detumbling Sun Pointing	ON ON	OFF	OFF	OFF		OFF	MTORQ	3	COTS
Science Pointing	ON	ON	BACKUP	ON ON		ON ON	Reaction wheels	4	COTS
Telecommunications	ON	ON	ON	ON	BACKUP	ON	TOTAL ADCS		

Sizing the platform Power Supply

HERMES Workshop, November 19 2020

Power supply architecture

OBS MODE - sunlit

Parameter	Value [W]
Battery recharge power demand	4.07
System power demand	13.36
Total power demand	17.43
Solar arrays generated power	20.75

OBS MODE – sunlit, man &comm

Parameter	Value [W]
Battery recharge power demand	4.65
System power demand	13.36
Total power demand	18.01
Solar arrays generated power	20.75

OBS MODE – sunlit, man&comm in eclipse

Parameter	Value [W]
Battery recharge power demand	4.41
System power demand	13.36
Total power demand	17.50
Solar arrays generated power	20.75

HERMES Workshop, November 19 2020

LEOP-	charging	<mark>y batter</mark> y
-------	----------	-------------------------

Parameter	Value [W]
Battery recharge power demand	11.21
System power demand	5.83
Total power demand	17.43
Solar arrays generated power	25.00

Power supply architecture

- 1. Equatorial orbit with Inertial Pointing Wing Panels.
- 2. Equatorial orbit with Zenith Pointing: Petals Panels.
- 3. Equatorial orbit with Zenith Pointing: Wing Panels.
- 4. **SSO orbit** with Inertial Pointing: Wing Panels.

Sizing the platform Assembly

HERMES Workshop, November 19 2020

Space segment baseline configuration

Mass budget

	Name	Description	V Mass [g]	Μ%	M.Mass [g]
Maaa budaat	PFM/FM0 (with system	margin)			7281.5
mass pudget	System margin	- /		10%	
	PFM/FM0	Hermes SP Proto-Flight Model	6035.2		6619.5
	STR	Structure and Mechanisms	343.0		380.6
	STR-PRM	Primary Structure	310.0	10%	341.0
	STR-SUP1	IMU/Iridium support	33.0	20%	39.6
	EPS	Electric Power System	1649.0		1911.5
	DOCK-EPS	EPS docking board	80.0	5%	84.0
	ACU	Array Conditioning Unit	54.0	5%	56.7
	PDU	Power Distribution Unit	57.0	5%	59.9
	W-SArray-ASM	Wing Solar Array Assembly	700.0	20%	840.0
	B-SArray-ASM	Body-mounted Solar Array Assembly	500.0	20%	600.0
	BATT	Battery Assembly	258.0	5%	270.9
	ADCS	Attitude Determination and Control System	1188.0		1289.0
	DOCK-ADCS	ADCS Docking Board	64.0	5%	67.2
	OBC-ADCS	ADCS Controller	24.0	5%	25.2
	MAGMTR	Main Magnetometer	8.0	5%	8.4
	GPS	GPS board	31.0	5%	32.6
	MIORQ DAVL ASM	3-axis Magnetorquers	156.0	5%	163.8
		CDS antenna	830.0	10%	913.0
	IMU	GPS antenna Inertial Measurement Unit (6DOE)	25.0	5%	26.3
	INIO	mertial measurement onit (000P)	25.0	570	20.5
	TT&C	Telemetry, Telecommands, and Control	629.0		689.2
	TR-SBAND	S-band transmitter	106.0	10%	116.6
	ANT-S-TX	S-band antenna TX	136.0	10%	149.6
		UHF transceiver	106.0	10%	116.6
	IDD MDM	OHF antenna Iridium modom	85.0	5%	89.3 21.5
	IPD_ANT	Iridium antenna	10.0	20%	12.0
	IRD-IE	Iridium interface board	20.0	20%	24.0
	ANT-S-RX	S-band antenna RX	136.0	10%	149.6
	OBDH	On-Board Data Handling	97.0		110.7
	OBC-MAIN	Main OBC module	57.0	10%	62.7
	IF-BRD	Interface board	40.0	20%	48.0
	TCS	Thermal Control System	5.0		5.3
	PNT-ARGLZ	Paint payload panels	5.0	5%	5.3
	HARNESS	Platform harness	545.0	20%	654.0
HERMES Workshop, November 19 202	SCI-PL	Scientific Payload	1579.2	0%	1579.2

Timeline

HERMES Workshop, November 19 2020

All 6 satellites development\assembly & acceptance tests run @PoliMI-DAER labs

HERMES Workshop, November 19 2020

Final remarks

• **HERMES** represents an innovative approach to **perform space science** in terms of:

- o Exploitation of *miniaturized* new generation scientific *payloads*
- *Enhancement of cubesat class performance* & technology to cope with challenging operational requirements
- New lifecycle paradigm with research centers and academy to cover from conceptual phase to flight
- HERMES s\c is applicable for <u>space exploration missions</u> for Moon and Asteroids mineralogy characterization
- **HERMES** *Service Module* is a <u>general purpose platform</u> which offers to PL:
 - 100x100x100 mm volume
 - 1.5 kg mass
 - 5 W power
 - 1Gb data/d

