Astrophysics with CubeSats

Michele Trenti The University of Melbourne

Based on public domain or otherwise unrestricted information

HERMES-SP/TP 1st Scientific Workshop - 19/11/2020

Why astrophysics from space?

New opportunities: CubeSats

- In-principle advantages for tiny focussed missions
 - Cost, rapid development, advanced tech
 - Research applications pioneered in 2008
 - Growing number of research CubeSats today

CSSWE 3U (2012)

Credit: CU Boulder

CubeSats for astronomy

• Challenges:

Accurate attitude control

Data downlink (+prompt target uplink)

Thermal management

Enabling technology:

Astronomy demonstration in orbit

Asteria (6U, 2017 launch): optical imaging

<1" pointing stability & high-precision photometry

Astronomy demonstration in orbit

Credit: MIT/JPL

Asteria (6U, 2017 launch): high data throughput

Downlink of images is enabled by S-band!

Table 2: Summary of the ASTERIA spacecraft.

Parameter	Value	
Mass	10.165 kg	
Stowed dimensions	239 mm x 116 mm x 366 mm	
Power generation	48 W (beginning of life)	
Energy storage	52.7 Wh (beginning of life)	
Telecom frequency	S-band	
Data rates	32 kbit/s uplink	
	1 Mbit/s downlink	
Processor	Xilinx Virtex 4FX / PowerPC405	
Onboard storage	14.5 GB	Smith+ 2018

Future: Ka/Ku band comms also being developed

Cryogenic thermal management

CryoCube (2020; 3U) aims to demonstrate T=100K

Deployable SunShield around a (small) payload

CryoCube website

Tech demo for active cooling (microcoolers) ongoing

Next on the launch pad (selected list)

2021+: UV spectroscopy/imaging [exoplanets]

- CUTE (6U)
- SPARCS (6U)

2022+: High-energy constellations [GRBs, GWs]

- BurstCube (6U)
- HERMES (6x3U+)
- Camelot (9x3U)

An innovative IR space telescope?

An innovative IR space telescope?

Yes, thanks to CubeSat tech!

SkyHopper

The idea: An IR "shoe-box" telescope

- 12U CubeSat [~22kg,~50W]
 - 15cm imager [4(+2) bands, 0.8-1.7 μm]
 - 1.5deg² FoV, 4M pixel
 - Highly stable spacecraft [~3" RMS]
 - Rapid slew [~2deg/s] & 24/7 comms
 - 2yr primary mission

Science case: Frontier problems

• Are we alone?

Search for other Earths

• Where are we coming from?

• First stars and galaxies

Artist's concepts, NASA

HERMES-focussed science: Transients

- Hop to observe Gamma Ray Bursts in the near infrared
 - Identify stellar explosions
 13 billion light years away
 (within the first galaxies)

HERMES-focussed science: Transients

- Hop to observe Gamma Ray Bursts in the near infrared
 - Identify stellar explosions
 13 billion light years away
 (within the first galaxies)

Hopping 1000 times faster than Hubble to double GRBs at z>5 (first Gyr)!

GRB afterglow requirements

- Rapid photometric redshift determination of z>5
 GRB afterglows during reionization
 - High point-source sensitivity

• m_{AB}=19.5 in t=600s

- Simultaneous imaging in 4 bands (0.8-1.7 μm)
- On target in <180s from trigger (if visible)
- Key challenges:
 - IR detector thermal management
 - Near-real time uplink/downlink of targets/photometry

Hardware: 10x20cm IR telescope

• Ambition: First IR imager (HgCdTe) actively cooled to 140±0.1 on a CubeSat

SkyHopper is technologically challenging: risk mitigation?

HERMES-SkyHopper connection: SpIRIT

SpIRIT: first mission funded by Australian Space Agency

- 6U (10kg) CubeSat to launch in 2022
- Australian-made spacecraft, Italian x-ray instrument

• Key goals:

- Showcase maturity of Australian space industry
- Augment HERMS SP/TP capabilities
- SkyHopper risk mitigation (thermal management, real-time comms)

SpIRIT at a glance

Apogee bus Australian made nanosatellite platform

Mercury payload

<u>Herme</u>

HERMES payload X-ray remote sensing instrument

TheMIS payload for cooling of advanced sensors

Thruster payload Australian electric propulsion technology

Al operations of nanosatellites

SpIRIT-HERMES complementarity

- SpIRIT orbit improves HERMES event localisation (near orthogonal plane)
- SpIRIT's cooling improves HERMES performance (10x reduction in leakage current)
- Ground segment cooperation opportunities

TheMIS (Thermal management)

- Subsystem for payload active thermal management:
 - Efficient (Stirling cycle)
 - Payload T \in [243K;273K]*
 - Stability to <0.5K
 - Explore active vibration cancellation
 - Deployable radiators

[*Cooler tip capable to T<100K]

Mercury (Rapid comms)

Subsystem for near-real-time communications

 Iridium duplex+Globalstar simplex

The future

- Nanosats have growing role in astrophysics
 - Complement rather than compete with flagships
- Distributed-aperture space observatories

Summary: Emerging capabilities

- Nano-satellites enable cutting-edge low-cost space telescopes
 - Complement flagships
- CubeSat advantages:
 - Innovation, agility, dedication
- Australia's contribution (in cooperation w/Italy): SpIRIT, SkyHopper
- Bright future, limited by imagination

