Gravitational-wave astronomy

SCIENTIFIC WORKSHOP

M. Branchesi Gran Sasso Science Institute INFN/LNGS and INAF

A new window into the Universe

LIGO, Livingston, LA

First run O1 of the Advanced GW detectors

GW150914

- Weak transient gammaray signal detected by FERMI
- 0.4 s after the GW event, with FAP 0.0022 (2.9σ)

Connaughton et al. 2016, ApJL, 826, 6

Abbott et al. 2016, ApJL, 826, 13 Abbott et al. 2016, ApJS, 225, 8

Second run O2

17 August 2017, 12:41:04 UT

Credit: University of Warwick/Mark Garlick

GW170817

Radioactively powered transients

First run O1, second run O2, and half of third run O3a

O3a Event Rate

Cumulative Count of Events O1 = 3, O2 =8, O3a =39, Total =50 50 01 02 O3a 40 Cumulative #Events 30 20 10 400 500 100 200 300 LIGO-G2001862 Time (Days) Credits:LVC

LVC Catalog paper, arXiv: 2010.14527

O1, O2, O3 \rightarrow 50 candidate GW events

39 candidate GW events in ~26 weeks of O3a (FAR 2 per year → contamination fraction of less than 10%)

26 candidate events low-latecy reported in GCN alerts + 13 candidate events offline analysis

Masses in the Stellar Graveyard

Masses in the Stellar Graveyard

O2 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Masses in the Stellar Graveyard

LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

TOTAL MASS vs MASS RATIO

LVC Catalog paper, arXiv: 2010.14527

Notable candidate events

 \rightarrow intermediate massive BH

LVC Catalog paper, arXiv: 2010.14527

GW190425: another BNS detection!

	Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$
Primary mass m_1	$1.60 - 1.87 M_{\odot}$	$1.61-2.52 M_{\odot}$
Secondary mass m_2	1.46–1.69 M_{\odot}	1.12–1.68 M_{\odot}
Total mass m _{tot}	$3.3^{+0.1}_{-0.1}~M_\odot$	$3.4^{+0.3}_{-0.1}M_{\odot}$
Luminosity distance $D_{\rm L}$	159 ⁺⁶⁹ ₋₇₂ Mpc	159 ⁺⁶⁹ ₋₇₁ Mpc

NO firm EM counterpart!

Sky localization of $8284\ deg^2$

Abbott et al. 2020, ApJL, 892

GW190814: FIRST NS-BH or low-mass BBH?

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GW190814

	EOBNR PHM	Phenom PHM	Combined
Primary mass m_1/M_{\odot}	$23.2^{+1.0}_{-0.9}$	$23.2^{+1.3}_{-1.1}$	$23.2^{+1.1}_{-1.0}$
Secondary mass m_2/M_{\odot}	$2.59\substack{+0.08\\-0.08}$	$2.58\substack{+0.09\\-0.10}$	$2.59\substack{+0.08 \\ -0.09}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	235_{-45}^{+40}	249^{+39}_{-43}	241^{+41}_{-45}
Source redshift z	$0.051\substack{+0.008\\-0.009}$	$0.054\substack{+0.008\\-0.009}$	$0.053\substack{+0.009\\-0.010}$
Inclination angle Θ/rad	$0.9^{+0.3}_{-0.2}$	$0.8\substack{+0.2\\-0.2}$	$0.8\substack{+0.3\\-0.2}$

GW190814

Abbott et al. 2020, ApJL, 896

- NO evidence of measurable tidal effects in the GW signal
- NO EM counterpart
- → Consistent with both BBH and NSBH scenarios
 → In the NSBH, observation results can be explained by the large mass ratio

Sky localization of 18.5 deg^2

Optical counterpart search

S190814bv - Sky Localization and Coverage

Ackley et al. 2020, A&A

→ Upper limits from the wide-field instrument follow-up campaign

Galaxy targeted upper limits \rightarrow

GW190521

The birth of a intermediate massive black-hole!

Credit: Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

Abbott et al 2020, PRL, 125 Abbott et al 2020, APJ, <u>900</u>

BBH in the accretion disk of a supermassive black hole?

Caltech/R. Hurt (IPAC)

Graham et al 2020, PRL 124

ZTF detected a candidate
counterpart(!?)

- EM flare close to AGN
- ~ 34 days after the GW event
- consistent with expectations for a kicked BBH merger in the accretion disk AGN
- 765 deg² localization area
- ZTF observed 48% of the 765 deg² (90% c.r.)

GW190426_152155

Event	${m_1 \choose M_{\odot}}$	${m_2 \atop (M_{\odot})}$	$\chi_{ m eff}$	$D_{\rm L}$ (Gpc)	z	SNR
GW190426_152155	$5.7^{+4.0}_{-2.3}$	$1.5\substack{+0.8 \\ -0.5}$	$-0.03\substack{+0.33\\-0.30}$	$0.38\substack{+0.19 \\ -0.16}$	$0.08\substack{+0.04\\-0.03}$	$8.7^{+0.5}_{-0.6}$

Highest FAR: 1.4 yr⁻¹

One of the most likely to be noise among the candidate event list

Data are uninformative about potential tidal effects

NSBH?

DL = 380 Mpc, 90% c.r. 1400 sq. degrees \rightarrow NO EM counterpart

Next observative runs

Strain sensitivities as a function of frequency

Observing run timeline and BNS sensitivity evolution

	01	— 02	— O3 •	04	05
LIGO	80 Мрс	100 Мрс	110-130 Mpc	160-190 Mpc	Target 330 Mpc
Virgo		30 Мрс	50 Mpc	90-120 Mpc	150-260 Mpc
KAGRA			8-25 Mpc	25-130 Mpc	130+ Mpc
LIGO-India	1				Target 330 Mpc
				AdV+	and aLIGO+
2015	5 2016	2017 2018 20	019 2020 202	1 2022 2023	2024 2025 2026

O5 volume = 15*O3 volume

RANGES corresponding to the orientation-averaged spacetime volumes surveyed per unit detector time

SNR = 8 in each detector

		01	02	02	04	05
		01	02	03	04	05
BNS Range (Mpc)	aLIGO	80	100	110 - 130	160 - 190	330
1 4 Mo+1 4 Mo	AdV	-	30	50	90-120	150 - 260
1.4 WOT1.4 WO	KAGRA	4		8-25	25-130	130+
BBH Range (Mpc)	aLIGO	740	910	990-1200	1400-1600	2500
30 Mo+30 Mo	AdV	-	270	500	860 - 1100	1300 - 2100
	KAGRA		÷	80-260	260 - 1200	1200+
NSBH Range (Mpc)	aLIGO	140	180	190-240	300-330	590
1 4 Mo+10 Mo	AdV	-	50	90	170 - 220	270 - 480
	KAGRA	-	-	15-45	45-290	290+
Burst Range (Mpc)	aLIGO	50	60	80-90	110-120	210
$[E_{\rm GW} = 10^{-2} M_{\odot} c^2]$	AdV	-	25	35	65-80	100 - 155
	KAGRA	. <u></u>)	5-25	25-95	95+
Burst Range (kpc)	aLIGO	15	20	25 - 30	35 - 40	70
$[E_{\rm GW} = 10^{-9} M_{\odot} c^2]$	AdV	-	10	10	20 - 25	35 - 50
	KAGRA	-		0 - 10	10 - 30	30+

GW sky localization for CBC

GW sky localization for CBC

90% c.r. area distance Redshift 0.01 0.1 1.00 1.00 GW170818 GW170817 GW170817 GW170818 BNS NSBH Cumulative fraction of events 0.20 0.20 220 events BBH 0.75 O3/HLV O3/HLVK Cumulative fraction of O4/HLVK 0.50 BNS NSBH BBH 0.25 O3/HLV O3/HLVK O4/HLVK 0.00 0.00 0.1 10 100 10³ 10^{4} 10 100 10³ 90% credible area (deg²) Luminosity distance (Mpc)

90% c.r. volume

Abbott et al. 2020, LRR

Luminosity

 10^{4}

LOCALIZATION: sky-area and volume

Abbott et al. 2020, LRR

		BNS	NS-BH	BBH
		Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.
 03	HLV	270^{+34}_{-20}	330^{+24}_{-31}	280^{+30}_{-23}
04	HLVK	33^{+5}_{-5}	50^{+8}_{-8}	41^{+7}_{-6}
		Comoving Volume (10 ³ Mpc ³) 90% c.r.	Comoving Volume (10 ³ Mpc ³) 90% c.r.	Comoving Volume (10 ³ Mpc ³) 90% c.r.
03	HLV	120^{+19}_{-24}	860^{+150}_{-150}	16000^{+2200}_{-2500}
O4	HLVK	52^{+10}_{-9}	430^{+100}_{-78}	7700^{+1500}_{-920}

Detection: SNR > 4 in at least two detectors and network SNR > 12

- O4 HLVK → median sky localization a few tens of square degrees
- 38-44% (12 16%) BNS are expected to have a 90% credible region smaller than 20 deg² (5 deg²)

O1, O2, O3 astrophysical Implications: merger rate

Population-level analyses of all-GWTC-2 reveals

- BBH merger rate $\mathcal{R}_{BBH} = 23.9^{+14.9}_{-8.6} \,\mathrm{Gpc^{-3}\,yr^{-1}}$
- BNS merger rate $\mathcal{R}_{BNS} = 320^{+490}_{-240} \, \mathrm{Gpc^{-3} \, yr^{-1}}$

LVC Populations paper, arXiv:2010.14533

- the BNS rate based on the two confident BNS detections: GW170817 and GW190425
- Assume a uniform BNS mass distribution between 1 Mo and 2.5 Mo with zero spins

O1, O2 Astrophysical rate → Detection rate

EXPECTED NUMBER OF DETECTIONS FOR O3 and O4

detection counts per one-calendar-year observing run

Detection: SNR > 4 in at least two detectors and network SNR > 12

Observation Run	Network	Expected BNS Detections	Expected NSBH Detections	Expected BBH Detections
03	HLV	1^{+12}_{-1}	0^{+19}_{-0}	17^{+22}_{-11}
04	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79_{-44}^{+89}

LVC Populations paper, arXiv:2010.14533

O1, O2 Astrophysical rate

EXPECTED NUMBER OF DETECTIONS FOR O3 and O4 detection counts per one-calendar-year observing run

Observation Run	Network	Expected BNS Detections	Expected BBH Detections
03	HLV	1^{+12}_{-1}	17^{+22}_{-11}
O4	HLVK	$\rightarrow 10^{+52}_{-10}$	10079^{+89}_{-44}

Detection: SNR > 4 in at least two detectors and network SNR > 12 About FAR < 1/100 yr

Abbott et al. 2020, LRR

About network SNR > 8

LVC Populations paper, arXiv:2010.14533

O1, O2, O3 Astrophysical rate

3G detector

The European 3G idea

Europe we developed the idea of a 3G GW observatory

- Factor 10 better (x1000 Volume) than Advanced (2G) detectors
- Wide frequency, with special attention to low frequency (few HZ)
- Capable to work alone (but aiming to be in a 3G network)
- 50-years lifetime of the infrastructure

Recently submitted ESFRI proposal

3G effort worldwide

NSF funded in 2018 the Conceptual Design Study of a 3G facility: Cosmic Explorer: 40km – L shaped detector

Einstein Telescope

Detection horizon for black-hole binaries

Binary systems of Compact Objects

WHY HIGH-ENERGY?

OPTICAL BAND

Adapted from Chornock+ 2019

- Too faint counterpart
 - Large sky-localization/many contaminants

Joint detections for ET limited by optical instruments capabilities!!

EINSTEIN TELESCOPE SKY LOCALIZATION

ET+LIGO/Virgo/KAGRA/LIGOindia

1 year of observations

EΤ

Prelimiary results by Stefan Grimm, GSSI

EINSTEIN TELESCOPE SKY LOCALIZATION

1 week of observations

At z larger than 0.2 sky-localization from GRBs!

Prelimiary results by Stefan Grimm, GSSI

GRB X-ray plateaus explained by structured jets

time after trigger [d]

Oganesyan et al. 2020 ApJ

What happen off-axis?

Ascenzi et al. 2020 A&A

Promising X-ray couterparts!

Next decades multi-messenger observatories

