GAMMA RAY BURST SPECTRAL PROPERTIES

G. GHIRLANDA ISTITUTO NAZIONALE DI ASTROFISICA (INAF) OSSERVATORIO ASTRONOMICO DI BRERA

1.GRB INTRODUCTION2.SPECTRAL PROPERTIES AND INTERPRETATION3.HERMES (in coll. with L. Nava)

GAMMA RAY BURSTS

GAMMA RAY BURSTS: TWO POPULATIONS

Hermes Scientific Workshop - 18-19 Nov. 2020

G. Ghirlanda - INAF/OABrera

THE MACHINERY

PROMPT EMISSION SPECTRAL SHAPE

Hermes Scientific Workshop - 18-19 Nov. 2020

PROMPT SPECTRUM: THE SYNCHROTRON PROBLEM

PROMPT SPECTRUM: THE SYNCHROTRON PROBLEM

Oganesyan Gor (former Sissa PhD now @ GSSI) et al. 2017: 14 bright GRBs detected by Swift Oganesyan G. et al. 2018: 34 GRBs detected by Swift

XRT + BAT1350 0.8 0.7 GRB 111123A 300 z = 3.1516count s⁻¹ cm⁻² [BAT] 7.0 cm⁻² [BAT] 7.0 cm⁻² [BAT] 250 230 200 200 200 150 sound solution 150 100 50 200 300 0 250 Time[s]

XRT+BAT+(GBM) spectra: 0.3 keV to 1 MeV

62% of GRBs

- Show two spectral breaks (new: low energy break 3-20 keV) which significantly improves the fit sigma
- ✓ The average photon indices below and above the break are -2/3 and -3/2

 $E_{\text{peak}}/E_{\text{break}} \sim 30$

Hermes Scientific Workshop - 18-19 Nov. 2020

PROMPT EMISSION: BREAK AND MORE \dots Also in Fermi/GBM

Fermi/GBM → Ravasio M. (PhD Univ. Bicocca) et al. 2018, 2019: 10 brightest Long and Short

Long GRBs

- E_{break}
- $E_{break}/E_{peak} \sim 1/10$
- α_1 and $\alpha_2 \sim$ synchrotron values

Short GRBs

- no E_{break}
- $\alpha_1 \sim -2/3$ (i.e. $E_{break} \sim E_{peak}$)

SYNCHROTRON: OBSERVABLES —> PHYSICAL PARAMETERS

Fit of observed spectra with physical synchrotron model: Oganesyan+2019; Burgess+2019; Ronchi+2020

GRB 170820B: Ronchi M. (Master Univ. Bicocca now @ ISS Barcelona) et al. 2020

Prompt: GBM+LAT(LLE) synchrotron fit

Resulting physical parameters:

- $h\nu_{cool} \sim 100 \text{ keV}$ • $h\nu_{max} \sim 2 \text{ MeV}$
- *p* ~ 4.3

SYNCHROTRON: OBSERVABLES —> PHYSICAL PARAMETERS

Fit of observed spectra with physical synchrotron model: Oganesyan+2019; Burgess+2019; Ronchi+2020

A new challenge: see Ghisellini et al. 2020 for a possible solution and discussion of alternatives

Hermes Scientific Workshop - 18-19 Nov. 2020

GAMMA RAY BURSTS DETECTION RATES

Hermes Scientific Workshop - 18-19 Nov. 2020

HERMES GRB DETECTION RATES

Hermes Scientific Workshop - 18-19 Nov. 2020

HERMES GRB DETECTION RATES

- S (50-300 keV); 80 deg
- X (3-20 keV); 60 deg
- Aeff(**9**)
- Detect $>5\sigma$
- duty cycle=0.5
- Fluence or Peak flux

Туре	Total [yr-1]	S [yr-1]	X [yr-1]
Long GRBs	50-150	40-106	34-110
Short GRBs	14	13	9

G. Dilillo & F. Fiore now testing different triggers on real light curves

Hermes Scientific Workshop - 18-19 Nov. 2020

HERMES VIEW OF GRB SPECTRA (I)

HERMES AND GRAVITATIONAL WAVES COUNTERPARTS

Hermes Scientific Workshop - 18-19 Nov. 2020

WHEN ORIENTATION MATTERS

Hermes Scientific Workshop - 18-19 Nov. 2020

WHEN ORIENTATION MATTERS

Hermes Scientific Workshop - 18-19 Nov. 2020

HERMES: BNS-EM COUNTERPART DETECTION RATE

Hermes Scientific Workshop - 18-19 Nov. 2020

CONCLUSIONS

GRB prompt emission: discovery of a low energy break and typical slopes

- Prompt emission seems synchrotron (both empirical and physical model fits)
- Cooling break ≤ injection break in long GRBs (~ for short GRBs)
 - *Requires small magnetic field and large emission radii ... but maybe protons

Hermes: GRB detection and study

- ~100 yr⁻¹ Long & ~15 yr⁻¹ Short
- Can identify E_{break} (tnx low energy threshold ~ 3 keV)
- Can constrain thermal emission components
- Can detect GW/GRB counterparts (LV design and 3G)