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Gamma Ray Bursts

 γ-ray  X-ray Optical Radio

>1973
Short flashes of keV photons

PROMPT 

>1997
Accompained by emission at lower frequencies
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Prompt
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GAMMA RAY BURSTS: TWO POPULATIONS

GW/GRB170817

Courtesy of G. Ghisellini

Kouveliotou+1994
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PROMPT EMISSION SPECTRAL SHAPE

Yu et al.  2016

Kaneko+2006 (CGRO)
Nava et al. 2011 (Fermi) 
Sakamoto et al. 2011 (Swift)
Goldstein+2012(Fermi)
… 

Yu et al.  2016

Yu et al.  2016
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PROMPT SPECTRUM: THE SYNCHROTRON PROBLEM
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Long

Ghirlanda+ 2004; 2015

Short
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E− p
2 −1

Inconsistency of observed 
low energy spectral slope

[Preece et al. 1998; Ghirlanda et al. 
2002; Kaneko et al. 2006; Frontera et 
al. 2006; Vianello et al. 2008; Gruber 

et al. 2014 …]

Ghisellini & Celotti 1999
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PROMPT EMISSION: DISCOVERY OF AN ADDITIONAL BREAK … AND MORE

Oganesyan Gor (former Sissa PhD now @ GSSI) et al. 2017: 
14 bright GRBs detected by Swift

Oganesyan G. et al. 2018: 34 GRBs detected by Swift

XRT+BAT+(GBM) spectra: 0.3 keV to 1 MeVA&A proofs: manuscript no. paper

Article number, page 18 of 21

XRT + BAT
A&A proofs: manuscript no. paper

Article number, page 18 of 21

EpeakEbreak
Phot sp. slope = -2/3

Phot sp. slope = -3/2

62% of GRBs 
✓ Show two spectral breaks (new: low energy 

break 3-20 keV) which significantly improves 
the fit sigma 

✓ The average photon indices below and above the 
break are -2/3 and -3/2

✓ Epeak /Ebreak ∼ 30
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Fermi/GBM ! Ravasio M. (PhD Univ. Bicocca) et al. 2018, 2019: 10 brightest Long and Short 

PROMPT EMISSION: BREAK AND MORE … ALSO IN FERMI/GBM

Long GRBs
• Ebreak 
• Ebreak/Epeak ~ 1/10 
• %1 and %2 ~ synchrotron values

Short GRBs 
• no Ebreak

• %1  ~ -2/3 (i.e. Ebreak~Epeak)

A&A proofs: manuscript no. 32245_corr

Fig. 2. Comparison between the SBPL model (blue curve), SBPL+BB
(green solid curve), and 2SBPL (red curve). Normalizations are arbi-
trary.

These models are shown (assuming typical parameters for
the photon indices) in Fig. 2 (SBPL in blue and 2SBPL in red).
For comparison, we also show a SBPL+BB (green line). As is
evident, the overall e↵ect of adding a (non-dominant) BB is sim-
ilar to the e↵ect of considering a softer SBPL (i.e. more con-
sistent with synchrotron, ↵2 = �1.5) and adding a break at low
energies. The final functions have a similar shape (red and green
solid lines in Fig. 2).

3. Time-integrated analysis

We fit the 2SBPL function, defined in equation 1, to the time-
integrated spectrum of the main emission episode (time inter-
val 186.40–207.91 s). The result is shown in the bottom panel of
Fig. 3. The chi-square is �2

red = 701.9/462 = 1.52, correspond-
ing to an improvement at more than 8� compared to the SBPL
fit.

A spectral break is found at Ebreak = (107.8 ± 1.9) keV.
The peak energy increases (compared to previous tested mod-
els) to Epeak = 673.5 ± 10.8 keV. The photon indices below
and above Ebreak have best fit values ↵1 = �0.62 ± 0.01 and
↵2 = �1.50 ± 0.01, respectively. These values are very close to
those expected from synchrotron emission from a cooled popu-
lation of electrons.

We recall that the same spectrum, when modelled with a
SBPL+BB (section 2.3) gives �2

red = 909.7/462 = 1.97. Since
the SBPL+BB and 2SBPL are not nested models, but have the
same number of degrees of freedom, they can be compared in
terms of �2 and associated probability. This comparison favours
the 2SBPL model. However, we note that both fits have a large
reduced chi-square. The main contribution comes from the in-
consistency between the two NaI, especially at low energies (i.e.
in some energy ranges, one is systematically above/below the
other).

Since in the time interval we are considering for the time-
integrated analysis, LAT observations are also available, it is
worth investigating their consistency with the GBM data. We
find the LLE data do not lie on the extrapolation of the BGO
data: they instead reveal the presence of a softening at high en-
ergies. In order to model this softening, we modify the 2SBPL

Fig. 3. Time-integrated spectrum of the main event (186.40–207.91 s).
Three di↵erent models are tested: SBPL, SBPL+BB, and 2SBPL (from
top to bottom). Di↵erent colours refer to di↵erent instruments, as ex-
plained in the legend. In each panel, the bottom stripe shows the model
residuals.

by adding an exponential cut-o↵ at high energy. The fit shown
in Fig. 4 with the solid black line. The LLE data are shown
with purple symbols. The best fit value of the cut-o↵ energy (de-
fined as the energy at which the flux is suppressed by a factor
⇠ 1/e as compared to the simple PL extrapolation) is Ecut =

Article number, page 4 of 11
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SYNCHROTRON: OBSERVABLES —> PHYSICAL PARAMETERS

hν
p

∼
2M

eV

hν
c

∼
10

0K
eV

GRB 170820B: Ronchi M. (Master Univ. Bicocca now @ ISS Barcelona) et al. 2020

Fit of observed spectra with physical synchrotron model: Oganesyan+2019; Burgess+2019; Ronchi+2020

Resulting physical parameters: 

•
•
•

hνcool ∼ 100 keV
hνmax ∼ 2 MeV
p ∼ 4.3

Prompt: GBM+LAT(LLE) synchrotron fit
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SYNCHROTRON: OBSERVABLES —> PHYSICAL PARAMETERS
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GRB 170820B: Ronchi M. (Master Univ. Bicocca now @ ISS Barcelona) et al. 2020

νcool ≤ νmax

Prad = Psyn + PIC ∝ U′�B + ξU′�r

t′�cool = γ
Prad

≃ 3mec2

4σTcγ[U′�B + ξU′�r]

B′ �2 1/R2

Cooling is 
“moderate”

 [e.g. Daigne 
2011; 

Beniamini & 
Piran 2013]

Fit of observed spectra with physical synchrotron model: Oganesyan+2019; Burgess+2019; Ronchi+2020

Resulting physical parameters: 

•
•
•

hνcool ∼ 100 keV
hνmax ∼ 2 MeV
p ∼ 4.3

Prompt: GBM+LAT(LLE) synchrotron fit

Most of analysed GRBs 
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A new challenge: see Ghisellini et al. 2020 for a possible 
solution  and discussion of alternatives



GAMMA RAY BURSTS DETECTION RATES

Detection rate depends:

GRB intrinsic properties 
• Luminosity distribution
• Redshift distribution
• SED
• Duration

Instrumental properties
• Energy range
• Background
• Field of view
• Duty cycle

Short 

Long {

LONG SHORT

G
RB

s/
yr
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HERMES GRB DETECTION RATES 

Population Based

Population intrinsic properties:
1.Luminosity/energy function
2.Cosmic rate distribution

ϕ(L)
Ψ(z)

Hermes 
instrumental 
parameters

Reproduce GRB samples 
(Batse, Swift, Fermi …) 

Hermes GRB 
detection rates 

• Ghirlanda et al. 2015 (long GRBs)
• Ghirlanda et al. 2016 (short GRBs)

In collaboration with L. Nava 

Adv. 
1) Control of selection biases (wrt sample based estimates)
2) Multi-observable constraints
3) Used for different missions/telescopes (e.g. CTA, Theseus …) —> explore synergies
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HERMES GRB DETECTION RATES

G. Dilillo & F. Fiore now testing 
different triggers on real light curves  

Type Total [yr-1] S [yr-1] X [yr-1]

Long GRBs 50-150 40-106 34-110

Short GRBs 14 13 9

• S (50-300 keV); 80 deg
• X (3-20 keV); 60 deg
• Aeff())
• Detect >5*
• duty cycle=0.5
• Fluence or Peak flux
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Hermes all
Hermes X

Fermi
X detector will extend the 

detected population towards 
softer events 



HERMES VIEW OF GRB SPECTRA (I)
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Green: limiting flux for significant 
identification of the break 

+Hermes:
Ebreak(t); Epeak(t)
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HERMES AND GRAVITATIONAL WAVES COUNTERPARTS

Ghirla

GW170817 [Abbott+2017]

GRB170817 [Abbott+2017a]

KN AT2017gfo 
[Coultier+2017; Pian+2017 …]

Afterglow temporal evolution
[Margutti+2018; D’Avanzo+2018 …]

Source proper motion 
(Mooley+2018)

Source size constraints 
(Ghirlanda, Salafia+2019)

t .

⑤

CO

4
(BA)

NS 9. generale

Dim GRB & 
Kilonova

θview

A jet with an angular structure of: 
• Energy 
• Bulk Lorentz factor
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WHEN ORIENTATION MATTERS

Hermes Instrumental limit
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WHEN ORIENTATION MATTERS



HERMES: BNS-EM COUNTERPART DETECTION RATE

Hermes off-core limiting angle of detectable 

Jet core 
opening 

angle
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Assuming E(+) and ,(+) of 170817 (from 
Ghirlanda, Salfia+2019)  

Preliminary estimates adopting 
1) Early Hermes detector response files etc.
2) BNS —> succesfull jet
3) Should account for jet structure post.
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CONCLUSIONS

GRB prompt emission: discovery of a low energy break and typical slopes

• Prompt emission seems synchrotron (both empirical and physical model fits)

• Cooling break ≲ injection break in long GRBs (~ for short GRBs)

✴Requires small magnetic field and large emission radii … but maybe protons

Hermes: GRB detection and study

• ~100 yr-1 Long & ~15 yr-1 Short

• Can identify Ebreak (tnx low energy threshold ~ 3 keV) 

• Can constrain thermal emission components 

• Can detect GW/GRB counterparts (LV design and 3G)
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