FAST RADIO BURSTS AND MAGNETARS

SANDRO MEREGHETTI INAF – IASF MILANO

Hermes-SP/TP 1st Scientific Workshop Astrophysics with CubeSats

Magnetars

Fast Radio Bursts

Neutron stars powered by magnetic energy B~10¹⁵⁻¹⁶ G the highest in the Universe !

? Still a mystery

after ~20 yrs of observations

FAST RADIO BURSTS

Reviews: Cordes & Chatterjee 2019; Petroff+ 2019; Platts+ 2019; B. Zhang 2020

- Short (~ ms) and bright (~ 50 mJy 100 Jy @ 0.4-8 GHz)
- Highly dispersed (DM > DM_{Milky Way})
- No counterparts (a few host galaxies at z~0.03 0.5)
- A subset are repeating (2 periodic, 16 d and 157 d)

• high rate

(>1000 per day in whole sky @ > 1 Jy ms \rightarrow > 10³ Gpc⁻³ yr⁻¹)

• Extragalactic, but unknown origin

MAGNETARS

- (Isolated) neutron stars powered by magnetic energy (B~10¹⁵⁻¹⁶ G)
- ~30 known in Milky Way and Magell.Clouds
- Slowly rotating (P ~ 1-12 s), fast spin-down (dP/dt ~ $10^{-10} 10^{-11}$ s/s)
- $dE_{rot}/dt << L_x \approx 10^{34}-10^{36}$ erg/s

MAGNETARS

- (Isolated) neutron stars powered by magnetic energy (B~10¹⁵⁻¹⁶ G)
- ~30 known in Milky Way and Magell.Clouds
- Slowly rotating (P ~ 1-12 s), fast spin-down (dP/dt ~10⁻¹⁰ -10^{-11} s/s)
- $dE_{rot}/dt << L_x \approx 10^{34}-10^{36}$ erg/s
- most are transients ($L_{QUIESC} \approx 10^{32-33}$ erg/s)
- emit short hard X-ray bursts ($L \approx 10^{38-43}$ erg/s) and (rare) Giant Flares ($L \approx 10^{44-47}$ erg/s)

Magnetars

Fast Radio Bursts

April 28, 2020 burst from SGR 1935+2154 April 28, 20

First observational evidence for a connection

MAGNETARS POPULATION

P = 3.24 s B = 2.2 10^{14} Gauss τ = 3600 years Spin-down lum. = 2 10^{34} erg/s

SGR 1935+2154

Likely associated to SNR G57.2+0.8 Kothes+ 2018

SGR 1935+2154 was very active in April 2020

→ observed by several X/gamma satellites

Number of bursts

Swift / XRT detected a dust scattering X-ray ring on April 27, ~one hour after a ``burst forest''

We used the ring angular expansion speed to constrain the magnetar distance

$$D_{SOURCE} = 4.4 \stackrel{+2.8}{_{-1.3}} kpc$$

INTEGRAL Burst Alert System (IBAS) discovery

TIME OF PUBLICATION				
April 28	14:34:24	То	Burst from SGR 1935+2154	
	14:34:29	To + 5 s	IBAS Alert sent, id. with SGR 1935+2154	GCN Notice 8611

SGR 1935+21 . GRS 1915+105

TIME (sec)

Detection in radio !

TIME OF PUBLICATION				
April 28	14:34:24	То	Burst from SGR 1935+2154	
	14:34:29	To + 5 s	IBAS Alert sent, id. with SGR 1935+2154	GCN Notice 8611
	20:45	To + 6 hr	CHIME radio 400-800 MHz	Atel 13681

400-800 MHz: two pulses (0.6, 0.3 ms) separated by 29 ms Fluence 480 and 220 kilo-Jansky ms

Localized with ~1 deg accuracy at position of SGR 1935+2154

Detection in radio independently confirmed !

TIME OF PUBLICATION				
April 28	14:34:24	То	Burst from SGR 1935+2154	
	14:34:29	To + 5 s	IBAS Alert sent, id. with SGR 1935+2154	GCN Notice 8611
	20:45	To + 6 hr	CHIME radio 400-800 MHz	Atel 13681
April 29	03:04	To + 12.5 hr	STARE 2 radio 1.4 GHz	Atel 13684

An ``FRB-like'' radio burst

CHIME 400-800 MHz: two pulses (0.6, 0.3 ms) separated by 29 ms Fluence 480 and 220 kilo-Jansky ms

CHIME Collaboration 2020

STARE2 1.4 GHz: one pulse (= 2nd CHIME pulse) Fluence 1.5 +/-0.3 Mega-Jansky ms

bridging the gap

$E_{RADIO} \sim 10^{35-36} \text{ erg}$

x 1000 higher than most energetic GALACTIC pulses
 x 400 lower than least energetic FAST RADIO BURSTS

...and several other X-ray detections

TIME OF PUBLICATION				
April 28	14:34:24	То	Burst from SGR 1935+2154	
	14:34:29	To + 5 s	IBAS Alert sent, id. with SGR 1935+2154	GCN Notice 8611
	20:45	To + 6 hr	CHIME radio 400-800 MHz	Atel 13681
April 29	03:04	To + 12.5 hr	STARE 2 radio 1.4 GHz	Atel 13684
	09:30:38	To + 19 hr	INTEGRAL	GCN Circ 27668
	10:53		INTEGRAL	Atel 13685
	11:05		AGILE (no imaging)	Atel 13686
	15:34:34	To + 1 day	Konus-WIND (no imaging)	GCN Circ 27669
	19:05		Insight-XHMT	Atel 13687

INTEGRAL 20-200 keV light curve

 \rightarrow Hermes !

INTEGRAL SPECTRAL RESULTS

ь

Exp. cut-off power law with soft-to-hard evolution

Phot.index = 0.62 + - 0.2

 $E_{peak} = 34 + / - 8 \text{ keV}$ $E_{peak} = 60 + / - 5 \text{ keV}$ $E_{peak} = 125 [-29, +50] \text{ keV}$

INTEGRAL SPECTRAL RESULTS

WHY SGR 1935 ?

A garden-variety magnetar (3.24 s, 2.2 10¹⁴ G, 3600 yrs)

5 outbursts since its discovery in 2014 (but quiescent for decades before)

...AND WHY ONLY THIS BURST ?

Standard X-ray fluence but spectrally harder than usual

Unusual light curve ? (slow rise, more structured)

Not in the period of maximum activity (that occurred one day earlier)

RADIO versus X-RAY FLUENCE

X-ray u.l. on extragalactic FRB not yet very constraining, but RADIO u.l. on magnetars bursts and GF imply large range of F_R/F_X

TWO MAIN CLASSES OF FRB MODELS INVOLVING MAGNETARS

``PULSAR-LIKE''

``GRB-LIKE''

Most models originally developed considering Giant Flares, not 'normal' bursts

Lu, Kumar & Zhang

Both radio and in X-ray emission inside the NS magnetosphere

$$R < R_{LC}$$
 (= 1.5 10¹⁰ cm for SGR1935

[e.g., Pen & Connor 2015; Cordes & Wasserman 2016; Lyutikov
+ 2016; Kumar+ 2017; Zhang 2017; Lu & Kumar 2018; Yang & Zhang 2018; Kumar & Bosnjak 2020]

Emission in relativistic outflow interacting with surrounding medium at $R \sim 10^{13-15} \text{ cm} >> R_{LC}$

Collisionless shock in preexisting pairs wind or slow barionic ejecta

Independent on nature of central engine

[e.g. Lyubarsky 2014; Waxman 2017;Beloborodov 2017, 2019; Metzger+2019; Margalit+ 2020]

First <u>observational</u> proof of a connection between magnetars and FRBs lends strong support to FRB models involving magnetars

Many questions remain...

- Can all FRB be explained by magnetars ?
- Are the magnetars in extragal. FRB different from Galactic ones?
- Why radio emission only from this particular burst ?
- How are the radio pulses generated by magnetars ?

.... but promising future ahead for HERMES !!