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Goals and constraints

Goal: 

• Characterize different trigger algorithms for GRB detection.

• Possibly identify good algorithms for operations onboard HERMES 
s/c.

Constraints: 

• Algorithm should be fast (small OBC). 

• Algorithm should be simple (many s/c). 



Summary

1. Traditional approach to GRB detection.

2. Alternative approaches: FOCuS and the CUSUM framework.

3. New developments: Poisson FOCuS, background estimate through 
exponential smoothing techniques.
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How to detect a GRB

The Fermi Gamma-Ray Burst Monitor, 
Meegan et al., Apj, 2009

The Trigger Algorithm for the Burst Alert 
Telescope on Swift, Fenimore et al., AIP 
Conf. Procs, 2003

In-flight performances of the BeppoSAX Gamma-Ray Burst Monitor, Feroci et al., SPIE procs, 1997 4



The standard recipe
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1. Count events in background window.
2. Count events in foreground window.
3. Somehow compute the significance of 

the foreground count excess.

4. If it exceeds a threshold value you issue 
a trigger, else wait for next count.      



Count excess significance

The true approach to computing standard significance 𝑆:

The background counts 𝐵 is supposed to be the true background count.

Moreover, this computation is slow or requires tabulates of incomplete gamma and 
erf functions.

Useful with simulations and checks.
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Count excess significance
Common yet flawed approach:

• It only holds its ground for large 𝑏𝑖 i.e. large windows.
Very dangerously prone to false positives otherwise.

Better approach (Li-Ma, 1983): 

The Trigger Algorithm for the Burst Alert Telescope on Swift, 
Fenimore et al., 2003

• Good on small windows, reasonable false positive rates.

But:
• Slow-ish (logs and sqrts).
• Does not account for trends.from Lin-Ma, 1983
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Different triggers for different GRBs

Problem:
GRBs are a wild bunch.

Solution :
Search foreground windows over multiple 
timeframes (and energy ranges).

“No two gamma-ray bursts are the same, as can be seen from this sample of a dozen 
light curves. Some are short, some are long, some are weak, some are strong, some have 

more spikes, some have none, each unlike the other one.“ 8



All is well that end well?

Of course not.

Problems:

1. This approach is slow.

2. You end up with a lot of parameters.

Both problems are aggravated in a nanosat context (small OBC, many s/c)
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Representing trigger operations
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n1 + n2 + n3 + n4
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Where do we go from here?

Winter 2019 – Initial discussion with Fiore and Riccardo.

Summer 2020 – Diagonal trigger algorithms work but no idea why.

September 2020 – Contact prof. Paul Fearnhead. Meet Paul, Idris and 
Kim.

Today – FOCuS.
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The Lancaster group’s point of view

GRB observation domain.

Different GRBs occupy different places in this 
plot.

A GRB which is detectable above a certain 
significance threshold will overlap with shaded 
region. 

The detection power of an algorithm can be 
quantified in terms of how good it coverage the 
shaded regions.
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Single window strategy coverage

Baseline strategy coverage of detection domain is bad.
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Traditional approach to detection

In order to achieve a better coverage one can pay computational resources in order 
to employ more foreground windows.
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Alternative strategy: CUSUM

CUSUM (Cumulative Sum Control Chart) is a standard technique for anomaly detection. Initially 
developed for automating industrial quality control, L. Page in 1954.

Recipe: at each time a new count is available:

1. Estimate background rate.

2. Compute significance over background of the most recent count, 𝑦𝑡.

3. Recursively compute, for some 𝜇:

4. If                           issue a trigger else wait for next count. 
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What does the recursion mean

This is a sequentially performed likelihood ratio (hypothesis) test. The alternative hypothesis being is there any 
anomaly beginning at some time with mean intensity 𝜇?

You can have three states:

1. St = 0. There are no evidence for anomaly.
2. 0 < St < T2. There are some evidences for a anomaly with intensity 𝜇 i.e. keep on acquiring.
3. St > T2.  There are enough evidences for a change with intensity 𝜇 within 𝑇 sigma-significance level.

At times in which you go from 1 to 2 you have a new candidate changepoint.
At times in which you go from 2 to 3 you have a trigger.

It’s like diagonal method but with only one diagonal at time.
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CUSUM coverage of detection domain

CUSUM strategies provide a better coverage of the observation domain
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CUSUM coverage of detection domain

For a certain ℎ there is an associated 𝜇 = 𝑇/ ℎ for which CUSUM 
coverage is strictly better.
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CUSUM coverage of detection domain

Multiple CUSUM provide good coverage but do not completely cover the 
detection domain.
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FOCuS

• Stands for Functional Online CUSUM.

• Developed by Kim Ward and Gaetano Romano under supervision of Paul Fearnhead and Idris 
Eckley of statistics department of University of Lancaster. Very recent, unpublished results.

• An improvement to CUSUM method which computes          for all possible 𝝁 values –all 
equivalent ℎ window lengths.

• For the normal implementation, the idea is to solve in 𝜇 recursion like:

The key fact making this possible: solutions at a given time are piece-wise quadratics which can 
be calculated and maximized efficienty.
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Quadratics and pruning

1. The algorithm carries around a list of quadratics over which a few, simple operations are 
performed at each time step.

2. Statistical evidences for a changepoint at time 𝑡0 is stored in a quadratic created at time 𝑡0 and 
updated over time.

3. The technique to determine which quadratic carry around is called pruning.

An unpruned FOCuS algorithm would add one quadratic each time you get a count greater than 
that expected from bkg. It will keep updating all the quadratics created in the past > soon 
computationally unfeasible.

However, most of the quadratics generated this way would share most of the information 
content or carry a number of evidences which is null, small or overwhelmed by other quadratics.
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Just FOCuS things

1. Dealing with changepoint when you get a trigger you get also a meaningful 
estimate of the GRB start time.

2. Small memory usage – you need two number to completely characterize a 
quadratic and most of the time you will be dealing with less than 5 quadratics at 
time.

3. Basic python implementation fits in 100 lines of code.

4. No windows set-up means less parameters.
Possibly very cool dealing with a constellation of satellites.
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Tests - so far..

Three main metrics:

1. Detection power 

2. Computation time

3. False positives

The following tests were performed for the normal version of the algorithm.

Extensive on simulated and simplified (one energy range) HERMES-like data.

Few on real data. 
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Detection power 
Long burst – GRB090323002

Notes:

1. Constant 70ph/s background, expected 
background for HERMES in band 50-300 keV.

2. Fundamental time bin 0.0625s.
3. Foreground duration 8 seconds.
4. Background window duration 32 seconds.
5. 30 simulations per transient fluence value.
6. Count significance as per Li-Ma, 1983.
7. Tests performed on 20 different bright, 

randomly selected GBM models.

In all tests FOCUS outperformed other algorithms.

Photon count
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Detection power 
Short burst – GRB131014215

Notes:

1. Constant 70ph/s background, expected 
background for HERMES in band 50-300 keV.

2. Fundamental time bin 0.0625s.
3. Foreground duration 8 seconds.
4. Background window duration 32 seconds.
5. 30 simulations per transient fluence value.
6. Count significance as per Lin-Ma, 1983.
7. Tests performed over 20 different bright, 

randomly selected GBM models.

Similiar detection power for exhaustive search 
and FOCuS.

Photon count
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Computation times

Different trigger algorithms are run over  inhomogenous 
background simulations of fixed duration (5400 s). Duration 
of each trigger call is recorded. 
The process is repeated for 100 background simulations.

Notes:

1. Background modulated by trigonometric function with 
period 5400 𝑠.

2. Fundamental time bin 0.0625 s.
3. Foreground duration 8 seconds.
4. Background window duration 32 seconds.
5. Count significance as per Li-Ma 1983.

FOCUS +300 – 400% faster than log-spaced time lengths search. 
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False positives

Different trigger algorithms at different threshold are fed data from constant background until a positive is observed. The procedure is 
repeated 100 times. Count excess significance computed through Li-Ma, 1983. Fundamental time partitioning 0.0625s.

Parametric search is the algorithm less prone to false positives (less tests). 
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False positives
The impact of how you estimate significance

Same trigger algorithm at different threshold, 
employing different strategies for estimating 
significance in counts. 
Algorithms are fed data from a constant 
poisson background until a positive is 
detected. Operation is repeated 100 times per 
threshold value.

Notes:

1. We used exhaustive (all window) logic.
2. Fundamental partitioning 0.0625 s.
3. Foreground duration 8 seconds.
4. Background window duration 32 seconds.

Run lengths for             are dangerously small. Li-Ma is good.
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The HETE Triggering Algorithm – Fenimore et al. 



The latests: FOCuS Poisson

The FOCuS implementation we have seen so far was built for normally distributed data. 

As such, it required some technique to standardize data before input.

We do have a new FOCuS implementation natively built for Poisson distributed data (counts)
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NORMAL POISSON



Exponential smoothing
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Different strategies for computing background e.g. model query, moving average..

We are proposing using exponential smoothing techniques which are faster, i.e.:

Simple exponential smoothing:

Simplest (one parameter).

Double exponential smoothing:

Two parameters, good with trend.

or



FOCuS x NN
We ran FOCuS on 2 months of GBM data with bkg estimated through a neural network developed by Riccardo Crupi.
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Conclusions

• With traditional algorithms there are 1. a trade-off between 
computational and detection efficiency; 2. possibly messy interfaces. 
These problems worsen in nanosats context.

• How to estimate background rate and significance is critical.

• FOCuS is a much performant alternative to traditional trigger 
algorithms.

• More realistic data are needed for further testing and optimization.
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