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Goals and constraints

Goal:
e Characterize different trigger algorithms for GRB detection.

* Possibly identify good algorithms for operations onboard HERMES
s/c.

Constraints:
e Algorithm should be fast (small OBC).
* Algorithm should be simple (many s/c).



summary

1. Traditional approach to GRB detection.
2. Alternative approaches: FOCuS and the CUSUM framework.

3. New developments: Poisson FOCuS, background estimate through
exponential smoothing techniques.



How to detect a GRB

4. BURST OBSERVATIONS
4.1. Triggers

A burst trigger occurs when the flight software detects an
increase in the count rates of two or more Nal detectors above an
adjustable threshold specified in units of the standard deviation
of the background rate. The background rate is an average
rate accumulated over the previous T seconds (nominally 17),
excluding the most recent 4 s. Energy ranges are confined to
combinations of the eight channels of the CTIME data. Trigger
timescales may be defined as any multiple of l6 ms up to 8.192 s.
Except for the 16 ms timescale, all triggers include two phases
offset by half of the accumulation time. A total of 120 ditferent
triggers can be specified, each with a distinct threshold.

The trigger algorithms currently implemented include four
energy ranges: the BATSE standard 50-300 keV range, 25—
50 keV to increase sensitivity for SGRs and GRBs with soft
spectra, =100 keV, and =300 keV to increase sensitivity for
hard GRBs and TGFs. Ten timescales, from 16 ms to 8.192 s in
steps of a factor 2, are implemented in the 50-300 keV range and
the 25-50 keV range. The =100 keV trigger excludes the 8.192 s
timescale, and the =300 keV trigger has only four timescales,
from 16 ms to 128 ms.

The Fermi Gamma-Ray Burst Monitor,
Meegan et al., Apj, 2009

SHORT RATE TRIGGERS

Running many short time scales through a triggering
code can require most of the CPU time. Fortunately.
the background counting rate of BAT is not expected to
change on short time scales (i.e.. less than a few sec-
onds). Thus, for the short time scales we will use simple
traditional triggers where there is a single background
period of fixed duration before the foreground period.
This is the type of trigger that was used on all GRB ex-
periments from Vela to BATSE.

The short trigger looks for statistically significant in-
creases in the count rate on five time scales: 4. 8. 16, 32,
and 64 msec. This is done for nine different regions of
the focal plane (four quadrants, the left half, right half.
top half, bottom half. and the full focal plane) and for
four energy ranges. Thus, there are 36 combinations of

The Trigger Algorithm for the Burst Alert
Telescope on Swift, Fenimore et al., AIP
Conf. Procs, 2003

Due to the nature of GRBs an onboard specific trigger criterion is needed. The GRBM trigger operates on the signals
detected between the LLT and ULT. With a time resolution on 7.8125 ms a moving average is continuously computed on a
Long Integration Time (LIT) that is adjustable between 8 and 128 s. The counts in a Short Integration Time (SIT,
adjustable between 7.8125 ms and 4 s) are compared to the moving average, and if they exceed a nG level (where G is the
Poissonian standard deviation and » can be 4, 8 or 16) then the trigger condition is satistied for that shield. If the same
condition is simultaneously active for at least two shields, then the GRBM trigger condition is satistied and the following
time profiles (High Resolution Time Profiles) are stored, separately for each of the four shields:

In-flight performances of the BeppoSAX Gamma-Ray Burst Monitor, Feroci et al., SPIE procs, 1997



The standard recipe

1. Count events in background window.

Count events in foreground window.

3. Somehow compute the significance of
the foreground count excess.
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Count excess significance

The true approach to computing standard significance S:
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The background counts B is supposed to be the true background count.

Moreover, this computation is slow or requires tabulates of incomplete gamma and
erf functions.

Useful with simulations and checks.
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Very dangerously prone to false positives Otherwise. The Trigger Algorithm for the Burst Alert Telescope on Swift,

Fenimore et al., 2003

Better approach (Li-Ma, 1983):
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Different triggers for different GRBs
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“No two gamma-ray bursts are the same, as can be seen from this sample of a dozen
light curves. Some are short, some are long, some are weak, some are strong, some have
more spikes, some have none, each unlike the other one.” 8



All is well that end well?

Of course not.

SHORT RATE TRIGGERS

Running many short time scales through a ftriggering

P ro b I e m S: code can require most of the CPU time.

1. This approach is slow.

2. You end up with a lot of parameters.

Abstract. The High Energy Transient Explorer uses a triggering algorithm for gamma-
ray bursts that can achieve near the statistical limit by fitting to several background
regions to remove trends. Dozens of trigger criteria run simultaneously covering time
scales from 80 msec to 10.5 sec or longer. Each criteria is controlled by about 25 con-

BAT uses about 800 different criteria to detect GRBs, each defined by a large number
of commandable parameters. Usually the critical parameter is the time scale of the
sample being analyzed for a statistically significant increase. There are three triggering

offset by half of the accumulation time. A total of 120 different
triggers can be specified, each with a distinct threshold.

Both problems are aggravated in a nanosat context (small OBC, many s/c)



Representing trigger operations
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Where do we go from here?

Winter 2019 — Initial discussion with Fiore and Riccardo.

Summer 2020 — Diagonal trigger algorithms work but no idea why.
September 2020 — Contact prof. Paul Fearnhead. Meet Paul, Idris and
Kim.

Today — FOCuS.



The Two Dimensions of Anomalies
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Single window strategy coverage

Gamma Ray Bursts picked up by window
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Traditional approach to detection

Gamma Ray Bursts picked up by multiple window

In order to achieve a better coverage one can pay computational resources in order
to employ more foreground windows.
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Alternative strategy: CUSUM

CUSUM (Cumulative Sum Control Chart) is a standard technique for anomaly detection. Initially
developed for automating industrial quality control, L. Page in 1954.

Recipe: at each time a new count is available:

1. Estimate background rate.
2. Compute significance over background of the most recent count, y;.

3. Recursively compute, for some u:
no 2
Sy = max{0,S¢—1 + 2py: — u*}

4. |If S%” ~ T2 issue a trigger else wait for next count.



What does the recursion mean

St = max{0, S;—1 + 2uy; — p°}

This is a sequentially performed likelihood ratio (hypothesis) test. The alternative hypothesis being is there any
anomaly beginning at some time with mean intensity u?

You can have three states:
1. S; = 0. There are no evidence for anomaly.
2. 0 <S¢ < T2. There are some evidences for a anomaly with intensity u i.e. keep on acquiring.

3. S; > T?. There are enough evidences for a change with intensity u within T sigma-significance level.

At times in which you go from 1 to 2 you have a new candidate changepoint.
At times in which you go from 2 to 3 you have a trigger.

It’s like diagonal method but with only one diagonal at time.



CUSUM coverage of detection domain

Gamma Ray Bursts picked up by Page
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CUSUM strategies provide a better coverage of the observation domain
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CUSUM coverage of detection domain

Gamma Ray Bursts picked up by window
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For a certain h there is an associated p = T /\'h for which CUSUM
coverage is strictly better.



CUSUM coverage of detection domain

Gamma Ray Bursts picked up by Page
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Multiple CUSUM provide good coverage but do not completely cover the
detection domain.
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FOCuUS

e Stands for Functional Online CUSUM.

* Developed by Kim Ward and Gaetano Romano under supervision of Paul Fearnhead and Idris
Eckley of statistics department of University of Lancaster. Very recent, unpublished results.

* Animprovement to CUSUM method which computes S}* for all possible u values —all
equivalent h window lengths.

* For the normal implementation, the idea is to solve in u recursion like:

St' = max{0, S;_1 + 2y — p°}

The key fact making this possible: solutions at a given time are piece-wise quadratics which can
be calculated and maximized efficienty.



Quadratics and pruning

1. The algorithm carries around a list of quadratics over which a few, simple operations are
performed at each time step.

2. Statistical evidences for a changepoint at time t, is stored in a quadratic created at time ¢, and
updated over time.

3. The technique to determine which quadratic carry around is called pruning.
An unpruned FOCuS algorithm would add one quadratic each time you get a count greater than

that expected from bkg. It will keep updating all the quadratics created in the past > soon
computationally unfeasible.

However, most of the quadratics generated this way would share most of the information
content or carry a number of evidences which is null, small or overwhelmed by other quadratics.



Just FOCuS things

1. Dealing with changepoint when you get a trigger you get also a meaningful
estimate of the GRB start time.

2.  Small memory usage — you need two number to completely characterize a
qguadratic and most of the time you will be dealing with less than 5 quadratics at
time.

3. Basic python implementation fits in 100 lines of code.

4. No windows set-up means less parameters.
Possibly very cool dealing with a constellation of satellites.



Tests - so far..

Three main metrics:

1. Detection power
2. Computation time

3. False positives

The following tests were performed for the normal version of the algorithm.

Extensive on simulated and simplified (one energy range) HERMES-like data.

Few on real data.



Detection power
Long burst — GRB090323002

Notes:

1. Constant 70ph/s background, expected
background for HERMES in band 50-300 keV.
Fundamental time bin 0.0625s.

Foreground duration 8 seconds.

Background window duration 32 seconds.
30 simulations per transient fluence value.
Count significance as per Li-Ma, 1983.

Tests performed on 20 different bright,
randomly selected GBM models.
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In all tests FOCUS outperformed other algorithms.
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Detection power
Short burst —=GRB131014215

Notes:

1. Constant 70ph/s background, expected
background for HERMES in band 50-300 keV.
Fundamental time bin 0.0625s.

Foreground duration 8 seconds.

Background window duration 32 seconds.
30 simulations per transient fluence value.
Count significance as per Lin-Ma, 1983.
Tests performed over 20 different bright,
randomly selected GBM models.

Noukswnh

Similiar detection power for exhaustive search
and FOCuS.

Counts/1.000 s bin

160

140

120

100

80

60

40

20

Success Rate

—— Exhaustive BM
Parametric BM
—— FOCusS

0.8

0.6

0.4

0.2

0.0
20 40 60

80

Photon count

100

120 140

GRB131014215. 190: 3.20

SIHULATED

]
a

Counts/0.200 s

17500

15000

12500

10000

7500

o
=]
=]
=]

2500

tTrigger

—— model_start

model_end

HoOelL

0

10 20 30
Times [s]

50 60

70

-50

50 100 150
Time since trigger [s]

200



Computation times

Different trigger algorithms are run over inhomogenous
background simulations of fixed duration (5400 s). Duration
of each trigger call is recorded.

The process is repeated for 100 background simulations.

Notes:

1. Background modulated by trigonometric function with
period 5400 s.

Fundamental time bin 0.0625 s.

Foreground duration 8 seconds.

Background window duration 32 seconds.

Count significance as per Li-Ma 1983.
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FOCUS +300 — 400% faster than log-spaced time lengths search.
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False positives
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Different trigger algorithms at different threshold are fed data from constant background until a positive is observed. The procedure is
repeated 100 times. Count excess significance computed through Li-Ma, 1983. Fundamental time partitioning 0.0625s.

Parametric search is the algorithm less prone to false positives (less tests).
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False positives

The impact of how you estimate significance

Same trigger algorithm at different threshold,
employing different strategies for estimating
significance in counts.

Algorithms are fed data from a constant
poisson background until a positive is
detected. Operation is repeated 100 times per
threshold value.

Notes:

1. We used exhaustive (all window) logic.

2. Fundamental partitioning 0.0625 s.

3. Foreground duration 8 seconds.

4. Background window duration 32 seconds.

Run Length [s]
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10

Because of the use of Poisson statistics in the def-
inition of the trigger, it is a common misconception that trigger algorithms are
guarding against statistical fluctuations. The o level is usually never set below
~ 11 and, yet, there are still many false triggers. Obviously, the cause of false
triggers is not statistical fluctuations. In most experiments (e.g., PVO, Ginga,
ISEE-3), the o level was 11 and 90% of the triggers were, in fact, not GRBs.
BATSE also had a threshold equivalent to ~ 11o; it used 5.5 o in the second
brightest illuminated detector which translates to ~ 11¢ in the brightest illumi-
nated detector. BATSE achieved ~ 50% false trigger rate because many triggers
could be rejected on-board by crude locating which was able to nullify many
false triggers when the source appeared to be inside the satellite (i.e., particle
events) or coming from the sun.

The HETE Triggering Algorithm — Fenimore et al.
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The |latests: FOCuUS Poisson

The FOCuS implementation we have seen so far was built for normally distributed data.
As such, it required some technique to standardize data before input.

We do have a new FOCuS implementation natively built for Poisson distributed data (counts)

NORMAL POISSON
A+ H )\/.L
St = max{0, Si—1 + 2uy; — p°} St = max {0,S; ; + Xylogpu — A(p — 1)}
¢ (1) = arp® + brp C-(u) =a;logp+b-(u—1)

focus focus_step(last_count, expected_background_count)




Exponential smoothing

Different strategies for computing background e.g. model query, moving average..

We are proposing using exponential smoothing techniques which are faster, i.e.:

Simple exponential smoothing: 8; = Ty + (1 — H)St_l
Simplest (one parameter).

or

$; —ax + (1 — a)(si—1 + bi_1)
by = B(st — st-1) + (1 — B)by—1

Double exponential smoothing:

Two parameters, good with trend.



counts [in ~ 4 s]

counts [in ~ 4 s]

FOCUS x NN

We ran FOCuS on 2 months of GBM data with bkg estimated through a neural network developed by Riccardo Crupi.
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Conclusions

* With traditional algorithms there are 1. a trade-off between
computational and detection efficiency; 2. possibly messy interfaces.
These problems worsen in nanosats context.

* How to estimate background rate and significance is critical.

* FOCuS is a much performant alternative to traditional trigger
algorithms.

* More realistic data are needed for further testing and optimization.



