

Orbit reconstruction for GPS outages

HERMES science team meeting, 19.07.21, online Pavel Jefremov

Univerza v Novi Gorici

Our contribution

The scientific goal for timing resolution requires precision of 30 m . The present algorithm is aimed at finding the satellite's position within long GPS coverage gaps, i. e. up to 25 min .

Corrections approach

We approximate the points inside the outage by

$$
\mathbf{X}_{\text {out }} \approx \mathbf{X}_{\text {Kep. }}+\delta_{1} \mathbf{X}+\delta_{2} \mathbf{X}
$$

Here

- $X_{\text {Kep. }}$ is Keplerian elliptical orbit with the J_{2}-correction for Earth's oblateness.
- $\delta_{1} X$ first-order correction, uses points just before and after the gap.
- $\delta_{2} X$ second-order correction: points lying 1 full quasi-period before and after the gap.

Keplerian orbit

The Keplerian orbit is constructed by utilising the two-body gravitational potential with J_{2} harmonics as correction to it:

$$
\begin{equation*}
U=-\frac{\mathrm{GM}}{r}+\frac{J_{2}\left(3 \sin ^{2} \theta-1\right)}{2 r^{3}} . \tag{1}
\end{equation*}
$$

Keplerian orbit

The Keplerian orbit is constructed by utilising the two-body gravitational potential with J_{2} harmonics as correction to it:

$$
\begin{equation*}
U=-\frac{G M}{r}+\frac{J_{2}\left(3 \sin ^{2} \theta-1\right)}{2 r^{3}} \tag{1}
\end{equation*}
$$

- The orbit is constructed using Keplerian equations and the least-square method with 5 points before the gap as input. (See Vallado, Fund. of Astrod. and Appl., 2013).
- After construction the orbit is propagated in the outage region to obtain $X_{\text {Kep. }}$.

Keplerian orbit

The Keplerian orbit is constructed by utilising the two-body gravitational potential with J_{2} harmonics as correction to it:

First-order correction

To find the first-order correction we

- take ca. 30 points lying before and 30 after the outage and compute for them the difference:

$$
\mathrm{X}-\mathrm{X}_{\mathrm{Kep}} .
$$

- Fit the difference by 8th-12th order polynomial for each coordinate.
- Interpolate the region in between. The result is $\delta_{1} \mathbf{X}$.
- For the data with $\sigma_{p o s}=3 \mathrm{~m}$, the probability to stay within 30 m is ca. 80 \%.

First-order correction

Second-order correction

For the 2nd-order correction we use data from one Keplerian period before and after the outage:

- Take points lying at $t_{ \pm}=t_{\text {out }} \pm T_{\text {Kep. and compute nominal }}$ orbit + 1st order correction for them.
- For pretending outages starting at $t_{ \pm}$compute difference from the data:

$$
\Delta \mathbf{X}_{\mathrm{b}, \mathrm{a}}=\mathrm{X}_{\mathrm{b}, \mathrm{a}}-\mathrm{X}_{\mathrm{Kep} .}-\delta_{1} \mathrm{X} .
$$

- Find the 2nd-order correction as the average value between "before" and "after"

$$
\begin{equation*}
\delta_{2} \mathrm{X}=\frac{\Delta \mathrm{X}_{\mathrm{b}}+\Delta \mathrm{X}_{\mathrm{a}}}{2} \tag{1}
\end{equation*}
$$

Second-order correction

Results

For the simulated fiducial HERMES orbit (LEEO, $e=0, i=0^{\circ}$) with Gaussian noise the probability to stay within 30 m for a 25-minute long outage: $\approx 98 \%$.

Additional analysis

In view of the future growth of the mission to HERMES-FC we investigated the performance of the algorithm for the orbits deviating from LEEO in either inclination or eccentricity.

Figure: Probability dependence on inclination $\left(e=10^{-4}\right)$ and eccentricity $\left(i=3^{\circ}\right)$.

Conclusions

- The algorithm works well for LEEO: Probability to stay within 30 m is $\approx 98 \%$.
- The probability decreases with inclination and has minimum at $i \approx 40^{\circ}$.
- No apparent dependence on eccentricity for low inclinations.
- The resulting probabilities are acceptable for the HERMES scientific needs.

